Mt. Pinatubo, 1991

Solar Geoengineering and Climate Risks

Douglas MacMartin
Research Professor, Computing + Mathematical Sciences
California Institute of Technology

With thanks to David Keith (Harvard), Ben Kravitz (PNNL), Ken Caldeira (Carnegie)

Volcanoes caused global cooling by putting small particles in the stratosphere
Solar geoengineering: any approach to deliberately alter radiative forcing at sufficient scale to measurably alter the global climate
Outline

- Motivation & context
- Uncertainty and feedback
- Geoengineering as a design problem
- Known unknowns and research needs

We may need to consider all of our options in order to tackle climate change
Atmospheric CO_2 Concentrations

We’re in the midst of a massive experiment on a system that is not well understood…

Last time CO_2 was this high was 15-20 million years ago… and sea levels were 75-120’ higher
Global mean temperature, last 135 years

Annual Temperature Anomaly (°C)

- NASA Goddard Institute for Space Studies
- Met Office Hadley Centre/Climatic Research Unit
- NOAA National Climatic Data Center
- Japanese Meteorological Agency

http://www.giss.nasa.gov/research/features/201501_gistemp/annual_temperature_anomalies_2014.png
Emissions history has roughly followed IPCC’s “worst-case” business-as-usual scenario.

To date: ~0.8°C
Projected warming depends on societal choices & model.
Eliminating CO$_2$ emissions would eventually stop warming.

But cooling would still be very slow.

Solar geoengineering is the ONLY way to cool by mid-century.
Solar Geoengineering Math...

- Doubling atmospheric CO$_2$ concentrations traps an extra $\sim 2 \times 10^{15}$ W
 - Current CO$_2$ concentrations trap roughly half that, somewhat offset by tropospheric aerosols
 - Human power consumption is $\sim 15 \times 10^{12}$ W

- In space: would need roughly 2×10^6 km2 reflective area
 - Need to build roughly 100 km2 per day for the next 50 years

- On surface, need $\sim 8 \times 10^6$ km2 reflective area
 - Would need to paint a lot of roofs white...

- Suppose you could get 0.1 um reflective particles in stratosphere...
 - Need volume of 10^6 m3
 - With residence time of one year, need about 30 litres/sec
Mt. Pinatubo
1991

Resulted in 30Mt of sulfate aerosols in stratosphere... & global cooling of ~0.5C

(and reduced monsoonal precipitation,...)
Ship tracks due to aerosols

A fleet of wind-powered ships spraying salt-water into low clouds might cool the planet
Why geoengineer?

• Reduces global temperatures and associated climate changes
 – Ideally reduces climate damages and risks (but does create other risks)
 – Avoid “tipping points” (permafrost thaw, sea ice decline, ice sheet melting,...)

• Fast:
 – The ONLY way to obtain *significant* change in mid-century climate

• Cheap:
 – Could implement some geoengineering with a handful of modified Gulfstream business jets...
 – Cost has been estimated as low as $1-2B per year (depending on how much climate change is offset by geoengineering)
Why not?

- Societal feedback: May reduce the desire to solve the real problem
 - *No-one should view this as a “solution” that allows unabated CO₂ emissions*
- “Side effects”, and known & unknown unknowns
 - E.g., Ozone, cirrus, white skies,…
- “Winners and Losers” (regional inequality)
 - Does *not* compensate climate change perfectly
 - Who gets to set the thermostat?
- Uncertainty
 - We don’t know the consequences
 - And we never will…
 - We don’t have a good track record for intervening in complex systems
- Ethics? *(See *trolleyology* entry in Wikipedia)*

- There is risk to inaction too…
 280ppm CO₂ is not one of our options

Design problem:
- *Optimization*
- *Feedback*
CO$_2$ radiative forcing from a CO$_2$ doubling (W / m2)

Radiative forcing from 1.8% reduction in solar intensity (W / m2)

Can these cancel ???

Govindasamy and Caldeira, 2000
From Caldeira and Wood, 2008; similar analysis replicated in 12 climate models (e.g. Kravitz et al 2014)
Optimization

• Choose the distribution of solar reduction to improve outcomes
 – Simulate each pattern & estimate net response assuming linearity:
 $$ z = b - Au $$
 – Add constraints and optimize...

• “Who gets to set the thermostat” is a poor metaphor
 – We don’t have to choose a uniform solar reduction: a design problem!
 – Most geoengineering simulations to date are useful to understand models, but not to understand climate impacts

MacMartin et al., 2013
Uncertainty

• We don’t know
 – The anthropogenic radiative forcing
 – The climate response to that
 – The radiative forcing from a particular geoengineering strategy
 – The climate response to that

• We could “test” geoengineering
 – Signal to noise issue...
 – takes a long time!

• Feedback of observed climate state:
 – Reach desired target despite uncertainty
Uncertainty: Spread in model response to a solar reduction

- How do we deal with not knowing how the climate responds to geoengineering?

Standard deviation of temperature response across 12 fully-coupled AOGCMs (from GeoMIP)

MacMartin & Kravitz, *almost submitted*
Uncertainty: Spread in model response to CO_2

- There is uncertainty in how the climate responds to increased CO_2 AND uncertainty in how the climate responds to a solar reduction, but...

Standard deviation of temperature response across 12 fully-coupled AOGCMs (from GeoMIP)
Uncertainty: Spread in model response to combined increase in CO$_2$ and solar reduction

- There is uncertainty in how the climate responds to increased CO$_2$ AND uncertainty in how the climate responds to a solar reduction, but...
- Most of this is simply uncertainty in the response to any radiative forcing

 — **Uncertainty is NOT additive!**

Standard deviation of temperature response across 12 fully-coupled AOGCMs (from GeoMIP)
Uncertainty: Spread in model response, after correcting for uncertain efficacy

- Uncertain “efficacy” leads to uncertainty in how much solar reduction is required to compensate for a given increase in CO$_2$
 - Uncertainty in the mean response, rather than spatial pattern
 - This can be compensated using feedback of observations

Standard deviation of temperature response across 12 fully-coupled AOGCMs (from GeoMIP)
Uncertainty & Feedback

Use feedback: adjust solar reduction in response to deviation between observed and “target” climate state

\[T = G(F_d + F_s + n) \]

\[F_s = \hat{F} - K(T - T_{\text{ref}}) \]

\[T_e = \frac{G(s)}{1 + G(s)K(s)}(F_r + n) = G_{fb}(s)(F_r + n) \]

MacMartin, Kravitz, Keith, Jarvis, *Climate Dynamics*, 2014
Evaluation model vs Design model

- Tune feedback in one GCM
- Use 2nd model as proxy for real world
- Controller is robust to inter-model differences

- Prescribed solar reduction: outcomes depend on efficacy
- Using feedback, can obtain desired result \textit{without a good model}

- Can we combine this with multi-degree-of-freedom optimization?
 - Inter-model differences larger on smaller spatial scale
Designing Geoengineering

Key elements of a design approach:

• Design geoengineering to meet specific objectives
 – Potentially balancing multiple criteria
• Choose the spatial degrees of freedom of intentional radiative forcing
 – Subject to constraints on what is achievable
• Estimate the input/output response from one or more design models
 – And use them to work out strategy
• Adjust forcing in response to observations
 – Compensate for uncertainty
• Validate in evaluation model ≠ design model

We need to go through all of these steps before we can say what the climate impacts of geoengineering might be
Example #1

- Adjust uniform solar reduction to maintain global mean temperature
- Adjust gradient in response to hemispheric asymmetry in temperature
- Adjust relative emphasis on high vs low latitudes in response to polar amplification

This is the problem we already solved

System is diagonally dominant
Example #2

• Adjust highLatitude NH and SH forcing to
 – Maintain Arctic temperature
 – Avoid tropical precipitation shifts

• MIMO (2x2) feedback control simulations currently running...

• Questions:
 – How well can we do this type of control despite uncertainty?
 – How well can we do this in the presence of natural variability?
 – How well can we do this by modifying aerosol injection amount by latitude rather than solar reduction?

<table>
<thead>
<tr>
<th></th>
<th>NH</th>
<th>SH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>ITCZ</td>
<td>0.35</td>
<td>0.25</td>
</tr>
</tbody>
</table>

System is triangular

4/28/2015

D. MacMartin
2x2 Feedback Results

- System identification: response to NH sinusoidal input
 - Magnitude and phase shift used to design feedback control

![Arctic Temperature Change](image1)

Amplitude Ratio = 2.15
Phase Lag = -46.23 degrees

![Proxies for ITCZ](image2)

Amplitude Ratio = 3
Phase Lag = 139.62 degrees

![Change in Mean Precip Latitude](image3)

Feedback results in design model
Four Limits to Feedback Control in Geoengineering

• Social decision process ≠ engineering algorithm
 – Not plausible that we would follow a pre-defined trajectory independent of outcomes, but the process for modifying that trajectory is...?

• Fundamental limits (with perfect information)
 – Can’t choose arbitrary spatiotemporal distribution of aerosol concentration

• Model uncertainty (models ≠ real world)
 – Feedback gives robustness to model uncertainty, but do need some info...

• Natural climate variability (SNR)
 – Feedback will respond to variability too → gives “noisy” commanded signal
Stratospheric Aerosol Geoengineering: What we know

• It would cool the planet, and quickly
 – Reduces many climate impacts
• Reduces precipitation changes in most places
 – Even with a uniform solar reduction
• Reduces stratospheric ozone if used before ~2040s
• Relatively “minor” health impacts
• Reversible (stop injecting, effect stops after a few years)
• Relatively cheap: could have an effect with a few modified business jets

Global mean temperature relative to pre-industrial (°C)
Stratospheric Aerosol Geoengineering: What we don’t know!

• Societal response:
 – Would people emit more CO$_2$?
 – Would people blame everything on the deployment?
 – How might this be governed, how would amount be adjusted over time?
• Regional precipitation response remains uncertain
• What size distribution of aerosol particles are created?
• What is the effect on cirrus clouds? (A positive or negative feedback?)
• Effect on stratospheric dynamics and heating, atmospheric chemistry
• How would ecosystems respond?
• The answers to all of these depend on how it was implemented:
 – How much, for how long, and to meet what goals?
 – How well can we design the system given uncertainty and climate variability?
• Are models sufficient – do we need (process-level) field-tests?
Future Research

• Better understanding of what strategies makes sense and what the impacts would be... *a design problem, not just evaluation*
 – More realistic scenarios with specific goals, balancing multiple criteria
 – Understand limits of what is possible *given model uncertainty & variability*

• What are realistic goals? (What are plausible deployment scenarios?)

• Simulate iterative decision-making under uncertainty

• Aerosol size distribution (are models good enough to predict this?)

• Simulate interaction with cirrus, stratospheric dynamics (same question!)

• What (process-level) field tests are useful, and at what scale?

• How would we ramp up? (Detection & attribution problem...)

• Explore other ideas... E.g. make winter sea ice thicker?

• Governance
 – Who decides if and when and what?
 – Who decides whether atmospheric research is ok?
 – How to address beliefs about harm?
A path forward?

- Business as usual
- Cut emissions aggressively
- Carbon-dioxide removal
- Solar radiation management

Graph showing climate impacts over time with different strategies.
Stratospheric Aerosol Geoengineering

What we know

• It would cool the planet
 – Reduces many impacts (heat wave, sea level rise, ...)
 – Acts quickly
• Reduces precipitation changes in most places
• Reduces stratospheric ozone if used before ~2040s
• Relatively “minor” health impacts
• Reversible (stop injecting, effect stops after a few years)
• Relatively cheap

What we don’t know

• Societal response?
 – Would people emit more CO₂?
 – Would people blame everything on the deployment?
•Particle size distribution, net RF?
• Effect on cirrus clouds
• Effect on stratospheric dynamics and heating, coupling with QBO, stratospheric H₂O, atmospheric chemistry beyond ozone
• Ecosystem response
• All of the above depend on how it was implemented
 – How well can we design for an uncertain and “noisy” system?
Summary

• We would be wise to research geoengineering
 – Don’t know consequences of doing “it”, or really even what “it” is...

• Optimization
 – Can reduce regional inequalities
 – Can use less solar reduction for same rms benefit
 – What is the goal?

• Feedback
 – Testing would take a very long time...
 • Not practical if geoengineering is supposed to be a crisis response
 – Feedback can compensate for uncertainty

• Geoengineering is an engineering problem
 – *Rather than (only) asking what the consequences are, ask*
 – *How can we engineer a better approach?*

4/28/2015
D. MacMartin
Future

• Better understanding of what strategies makes sense and what the impacts would be... *a design problem, not just evaluation*
 – More realistic scenarios with specific goals, balancing multiple criteria
 – Understand limits of what is possible given model uncertainty & variability
• What are realistic goals? (What are plausible deployment scenarios?)
• Simulate aerosols rather than solar reduction
 – Are models good enough to get particle size distribution?
• Understand interaction with cirrus, chemistry, stratospheric dynamics,...
• Better data from next volcanic eruption
• What tests are useful, and at what scale?
• How would we ramp up? (Detection & attribution problem...)
• Explore other ideas... E.g. make winter sea ice thicker?
• Governance
 – Who decides if and when and what?
 – Who decides whether atmospheric research is ok?
 – How to address beliefs about harm?
Feedback to track rate of change

- A decision to deploy SRM is not a binary choice, get to decide
 - How much radiative forcing to offset, as a function of time
 - Spatial distribution of radiative forcing (e.g. latitude of aerosol injection)
 - Maybe seasonal distribution
- Simple example:
 - Use geoengineering solely to limit the rate of change...
 - Finite deployment period (though still centuries)
Dynamics:
Need a simple model for control design

- Global mean temperature response is consistent with heat diffusion into a semi-infinite medium

\[H_D(s) = \frac{1}{\lambda + (\tau s)^{1/2}} \]

- One- or two-reservoir energy balance models do a poor job

\[C \frac{dT}{dt} = F - \lambda T \]

\[H_1(s) = \frac{1}{Cs + \lambda} \]
Model Spread (all 4 cases)

4xCO$_2$

4.2% solar reduction

4xCO$_2$ and 4.2% solar reduction

4xCO$_2$ and solar, corrected for efficacy
Roadmap?
(e.g. Caldeira & Keith, Issues in S&T 2010)

- Each phase is riskier than previous
- Don’t start something unless earlier activities suggest risk is acceptable
- Understanding roadmap important: is geoengineering a quick fix?

Modeling, and laboratory

Small-scale field experiments

Testing of climatic impact

Deployment or implementation

Understand processes; E.g. aerosol formation, cloud physics; no need for measurable radiative forcing

Intent is to add sufficient radiative forcing to estimate climate sensitivities

Looks like sub-scale deployment

4/28/2015
D. MacMartin
Basic Framing Questions

• Is geoengineering an alternative to reducing emissions?
• Is geoengineering in addition to reducing emissions?
• Or is geoengineering only a last-ditch resort in case of emergency?
 – Response to climate “tipping points”
• Geoengineering “forever”?
 – Rapid warming if ever stop
• Or only slow rate of change?
 – (Here, using feedback to track desired trajectory)
The World’s Largest Control Problem

• Most simulations to date just turn down the sun uniformly
 – But we could optimize the distribution (in space and time)
 – How do we choose what to do?

• How do we manage uncertainty?
 – Rely on feedback of observations

• E.g., can we limit Arctic warming without disrupting tropical rainfall?
 – Can we do this despite uncertainty in the system?
 – And in the presence of natural climate variability?

• How would we ramp up?
 – Detection/attribution problem... combined with proper governance
Simulating Feedback in a GCM

- Claim #1 (un-named individual):
 - Impossible to use feedback due to the “noise” from natural variability
- Example: starting in year 2040, restore climate to 2020 global mean temperature (HadCM3L simulation, PI control).
 - Design control using frequency response

- Claim #2 (different individual):
 - We already understand (static) feedback
- Average climate over previous N=2 years, update decision every N years:
 - Dynamics matter!
 - Problem is time delay
Testing geoengineering?

Introduce a time-varying signal and look for correlated climate response...

1. Is the climate response to the (small-amplitude) test signal the same as it is to full-scale deployment? (linearity)
 - Roughly (according to models)
2. Is the climate response to the time-varying test signal the same as it is to sustained deployment? (frequency response)
 - No (also relevant to volcanic forcing)
3. What is the trade-off between forcing amplitude, length of experiment, and confidence of knowledge?
 - Need to know signal-to-noise ratio
 - Answer: *a long time*
 - E.g. 20 years at 1 W/m²
 → 25% uncertainty in global temp response
 → 80% uncertainty in Indian precipitation

Optimization Summary

• “Setting the global thermostat” is a bad metaphor
 – Need to move beyond simulating uniform reduction
 – An engineering problem... If we’re ever going to implement some form of SRM, we should do it intelligently

• Not a panacea: climate system is connected
 – What happens in Vegas doesn’t stay in Vegas (Gavin Schmidt?)

• Caveat: results here are from a model, harder to do this in the real world

• Raises the question... what is the right metric to optimize?
Global rms vs Worst-off region
(Least-squares vs min-max)

- By optimizing the spatial and temporal distribution, can achieve 30% reduction in “worst-case” (largest residual climate change)
 - Without making global compensation worse
 - Most of the benefit from introducing spatial degrees of freedom

- Can use multiple degrees of freedom to balance multiple objectives

Increasing regional inequality
Further Trade-offs

• Uniform solar reduction has one “knob” to adjust; limited ability to trade off different objectives

• Example:
 – Minimize rms temp & precip,
 – Maximize Arctic sea ice,
 – or combination

• Constrain average solar reduction as proxy for “side effects” (e.g. ozone)
A multi-model assessment of regional climate disparities caused by solar geoengineering

- Temperature: all regions see reduced change in all models
- Precipitation: some regions show increased change in some models
Inter-model precipitation consistency

- Green: geoengineering reduces amount of change (i.e. opposite sign)
- Red: geoengineering increases amount of change
 - No region “worse” in every model, and
 - No model says “better” in every region
 - Weight temperature and precip: less change in all regions in every model