System Stability through technology

Basic capability

Advanced capabilities

Mechanical controls

Fly by wire

Stability through physics

Stability through technology
Smart Grid Design Goals

• **More** – increased capabilities
 – More capabilities at the edge and enterprise, pervasive automation

• **Better** – faster, more reliable & secure
 – The electric grid is more resilient
 – Dynamic control of all security elements allows the system to adapt to evolving threats

• **Easier** – usability (convergence, unified control, visualization, information on demand)
 – Tens of Millions of nodes are manageable
 – Situational awareness
 – Common Services allow for easier integration of new capabilities and technologies
Smart Grid System of Systems (SoS) Research

Four evolutions of Smart Grid SoS Architectures

Silos

ESB

Adapter-based

Common

1. Current-state
2. Typical SI Approach
3. DoD-style approach
4. Standards-based Internet-style
CCS Introduction

• Changing Landscape
 – Increased attention from government, media, public
 – New class of adversary and malicious threats
 – Increase use of Communications and Automation on the grid
 – Customer and 3rd Party Interaction increasing

• Objectives
 – Security needs to keep pace with increasing pace of technology adoption
 – Security needs to be baked in to new procurements while addressing legacy environment (No device left behind)
 – Security needs to comply with all regulations and relevant standards
 – Adhere to common services architecture that reduces implementation and operational costs through reuse

• Solution
 – CCS is a common service for securing applications and devices
 – CCS focuses on securing all critical energy delivery operations
 – CCS is the first open and standards based implementation which meets all objectives
CCS Technology Highlights

• The most advanced security system in the energy sector
 – Next generation utility technologies
 – DoD technology transfer
 – Best practices from many sectors
 – Modern SOA style architecture

• The most compliant security system
 – NERC CIP Version X
 – All Federal Processing Standards (DHS, FIPS)
 – NIST Compliant (NISTIR, SP)

• A robust, scalable and dynamic security system
 – Supports all Grid Applications
 – Supports current and next generation networking (MPLS)
 – Supports all major protocols used on the Grid
 – Modular Construction
CCS Technology Highlights

• Easily Integrated into existing environment
 – Supports existing control and IT investments (Directory Services, Enterprise PKI)
 – 8 inflight advanced programs are relying on new services (e.g. ISGD, Phasor Measurement, SA3, C-RAS, etc.)
 – Supports gradual evolution to full compliance over time

• Ease of Use
 – AMI Security uses command line and requires vendor support
 – CCS has next generation web based graphical user interface
 – Enables a powerful and unified security operations center

• IEC has committed to align with CCS principles
 – Hosted IEC TC 57 Security Meetings
 – New Part to FERC reviewed/recommended 62351

• GE and Subnet are deploying CCS compatible devices and discussion are underway with other major vendors
CCS Concepts: Advanced Visualization
Easy to use, intuitive interface
CCS Concepts: Control Plane
All Devices are centrally controlled
CCS Concepts: Groups
Management of communities and groups
<table>
<thead>
<tr>
<th>Initial CCS Capabilities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>• Public Key Infrastructure (PKI), Identity Management, Attribute Certificates (BoH)</td>
</tr>
<tr>
<td>Authorization</td>
<td>• Centrally Managed and Configured Security Associations (SAs)</td>
</tr>
<tr>
<td>Accounting</td>
<td>• Audit & Reporting (Alert, Syslog)</td>
</tr>
<tr>
<td></td>
<td>• Security Information and Event Management (SIEM)</td>
</tr>
<tr>
<td>Integrity</td>
<td>• Integrity Management Authority (IMA)</td>
</tr>
<tr>
<td></td>
<td>• Trusted Network Connect</td>
</tr>
<tr>
<td></td>
<td>• Bill-of-Health</td>
</tr>
<tr>
<td>Quality-of-Trust</td>
<td>• Source-based Data Labeling : Trusted, Questionable, Untrusted</td>
</tr>
<tr>
<td>Peer-to-Peer Communication</td>
<td>• Peer-to-peer middleware using Data Distribution System (DDS)</td>
</tr>
<tr>
<td></td>
<td>• Use only for control plane</td>
</tr>
<tr>
<td></td>
<td>• Several vendors available including open source</td>
</tr>
<tr>
<td>Dynamic Interactive GUI</td>
<td>• Accessed via Web Browser (Chrome 14, FireFox 7 and IE 10 in the future)</td>
</tr>
<tr>
<td></td>
<td>• Built-in Test and Peek-Poke Capabilities</td>
</tr>
</tbody>
</table>
GUI Icon Legend

- All Nodes in the security network are displayed as circles and quadrants represent quality of security attributes.

Status (Heartbeat)	BoH (Integrity)	Identity Certificate	QoT (Quality-of-Trust)
Alive | Healthy | Valid | Trusted
N/A | Expired | Expired | Questionable
No Heartbeat | Unhealthy | Revoked | Untrusted
Provisioned | Provisioned | Provisioned | Provisioned
To ensure proper operation, rigorous technology evaluation must take place in a controlled environment before smart grid technologies are deployed on the grid.