Distributed energy resource services and pricing: A Caltech perspective (Adam Wierman)
Goal:
under generation ⇔ demand response
over generation ⇔ storage
time variability ⇔ balancing energy

The Pricing Predicament
What new wholesale DR/DER services should be offered?
... how should they be incorporated into the market?
... and how should they be priced?
Wholesale market prices

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Energy</th>
<th>Reserves</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal Cap-zones</td>
<td>Day-ahead Energy</td>
<td>Day-ahead Reserves</td>
<td>Day-ahead Regulation</td>
</tr>
<tr>
<td></td>
<td>Real-time Energy</td>
<td>Real-time Reserves</td>
<td>Real-time Regulation</td>
</tr>
<tr>
<td></td>
<td>Locational</td>
<td>Zonal</td>
<td>Zonal</td>
</tr>
</tbody>
</table>

Goal: Extracting costs & incentivize “good behavior”

Retail Energy Rates

- Tiered
- Time-of-use
- Coincident-peak-pricing
- Real-time-pricing
- Net-metering

Consumers

- Utility Owned Assets
- Industrial
- Commercial
- Generation
- Electric Storage
- Transportation
- Thermal Storage
- Residential
Wholesale market prices

- **Capacity**
 - Seasonal
 - Cap-zones

- **Energy**
 - Day-ahead
 - Real-time
 - Locational

- **Reserves**
 - Day-ahead
 - Real-time
 - Zonal

- **Regulation**
 - Day-ahead
 - Real-time
 - Zonal

Goal: Extracting costs & incentivize “good behavior”

Retail Energy Rates

- Tiered
- Time-of-use
- Coincident-peak-pricing
- Real-time-pricing
- Net-metering

DR/DER Services

- **Consumers**
 - Utility Owned Assets
 - Industrial
 - Commercial
 - Generation
 - Electric Storage
 - Transportation
 - Thermal Storage
 - Residential
Wholesale market prices

- Capacity: Seasonal, Cap-zones
- Energy: Day-ahead, Real-time, Locational
- Reserves: Day-ahead, Real-time, Zonal
- Regulation: Day-ahead, Real-time, Zonal

Goal: Extracting costs & incentivize “good behavior”

Retail Energy Rates

- Tiered
- Time-of-use
- Coincident-peak-pricing
- Real-time-pricing
- Net-metering

Wholesale DR/DER services

- Balancing energy
- Ramping
- Capacity (Seasonal)
- Ancillary Services (reserves, regulation)

DR/DER Services

Consumers

- Utility Owned Assets
- Industrial
- Commercial
- Generation
- Electric Storage
- Transportation
- Thermal Storage
- Residential
Wholesale market prices

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Energy</th>
<th>Reserves</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal Cap-zones</td>
<td>Day-ahead</td>
<td>Day-ahead</td>
<td>Day-ahead</td>
</tr>
<tr>
<td></td>
<td>Real-time</td>
<td>Real-time</td>
<td>Real-time</td>
</tr>
<tr>
<td></td>
<td>Locational</td>
<td>Zonal</td>
<td>Zonal</td>
</tr>
</tbody>
</table>

Goal: Extracting costs & incentivize “good behavior”

Retail Energy Rates

- Tiered
- Time-of-use
- Coincident-peak-pricing
- Real-time-pricing
- Net-metering

Wholesale DR/DER services

- Balancing energy
- Ramping
- Capacity (Seasonal)
- Ancillary Services (reserves, regulation)

Goal: Provide dispatchable energy services

DR/DER Rates

- Real-time-pricing
- Pay-for-performance
- Fixed incentive
- Coincident-peak-pricing
- Contract-based
- Credits for service

Consumers

- Utility Owned Assets
- Industrial
- Commercial
- Generation
- Electric Storage
- Transportation
- Thermal Storage
- Residential
Wholesale market prices

- **Capacity**
 - Seasonal
 - Cap-zones
- **Energy**
 - Day-ahead
 - Real-time
 - Locational
- **Reserves**
 - Day-ahead
 - Real-time
 - Zonal
- **Regulation**
 - Day-ahead
 - Real-time
 - Zonal

Goal: Extracting costs & incentivize “good behavior”

Wholesale DR/DER services

- **Balancing energy**
- **Ramping**
- **Capacity (Seasonal)**
- **Ancillary Services**
 - Energy (DA/RT/Locational)
 - (reserves, regulation)

Goal: Provide dispatchable energy services

Separation of services

Retail Energy Rates

- **Tiered**
- **Time-of-use**
- **Real-time-pricing**
- **Coincident-peak-pricing**
- **Net-metering**

DR/DER Rates

- **Real-time-pricing**
- **Pay-for-performance**
- **Fixed incentive**
- **Coincident-peak-pricing**
- **Contract-based**
- **Credits for service**

Consumers

- **Utility Owned Assets**
- **Industrial**
- **Commercial**
- **Generation**
- **Electric Storage**
- **Transportation**
- **Thermal Storage**
- **Residential**
The Pricing Predicament

What new wholesale DR/DER services should be offered?
...how should they be incorporated into the market?
...and how should they be priced?

Wholesale DR/DER services

Balancing energy
Ramping
Capacity (Seasonal)

Energy (DA/RT/Locational)
Ancillary Services
(reserves, regulation)

DR/DER Rates

Real-time-pricing
Pay-for-performance
Fixed incentive

Coincident-peak-pricing
Contract-based
Credits for service

Consumers

Utility Owned Assets
Industrial
Commercial
Generation
Electric Storage
Transportation
Thermal Storage
Residential

Electric Storage

Secure Broadband / Cellular
Wide-Area Communications
Building Mgmt Systems

Forecasts
Market
Settlements
Adequacy
System
Balancing
Secure Broadband / Cellular
Wide-Area Communications
Building Mgmt Systems

The Pricing Predicament

What new wholesale DR/DER services should be offered?
...how should they be incorporated into the market?
...and how should they be priced?
The Pricing Predicament

What new wholesale DR/DER services should be offered?
...how should they be incorporated into the market?
...and how should they be priced?

Wholesale DR/DER services
Balancing energy
Ramping
Capacity (Seasonal)
Ancillary Services
(reserves, regulation)

DR/DER Rates
Real-time-pricing
Pay-for-performance
Fixed incentive
Coincident-peak-pricing
Contract-based
Credits for service

Consumers
Utility Owned Assets
Industrial
Commercial
Generation
Electric Storage
Transportation
Thermal Storage
Residential
(A few) Key Challenges

1) Consumer-side challenges

2) Social challenges

3) Utility-side challenges

4) Economic challenges
(A few) Key Challenges

1) Consumer-side challenges
 → Participation must be seamless (& profitable) for the consumer
 → Wide-spread participation requires aggregators/intermediaries

2) Social challenges
 → Avoid “energy poverty” & the “utility death spiral”
 → Direct control vs. voluntary participation

3) Utility-side challenges
 → Scalability & decentralized control

4) Economic challenges
 → What services is “economic control” feasible for?
 → Avoid dangers from magnifying market power
(A few) Key Challenges

1) Consumer-side challenges
 → Participation must be seamless (& profitable) for the consumer
 → Wide-spread participation requires aggregators/intermediaries

2) Social challenges
 → Avoid “energy poverty” & the “utility death spiral”
 → Direct control vs. voluntary participation

3) Utility-side challenges
 → Scalability & decentralized control

4) Economic challenges
 → What services is “economic control” feasible for?
 → Avoid dangers from magnifying market power

Case study: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman
Eilyan Bitar, Adam Wierman
Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low
Yunjian Xu, Adam Wierman
Lingwen Gan, Steven Low, Adam Wierman
Na li, Changhong Zhao, Masoud Farvar
John Ledyard, Lingwen Gan, Desmond Cai, Adam Wierman
Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad
(A few) Key Challenges

1) Consumer-side challenges
 → Participation must be seamless (& profitable) for the consumer
 → Wide-spread participation requires aggregators/intermediaries

2) Social challenges
 → Avoid “energy poverty” & the “utility death spiral”
 → Direct control vs. voluntary participation

3) Utility-side challenges
 → Scalability & decentralized control

4) Economic challenges
 → What services is “economic control” feasible for?
 → Avoid dangers from magnifying market power

Case study: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman
Eilyan Bitar, Adam Wierman
Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low
Yunjian Xu, Adam Wierman
Lingwen Gan, Steven Low, Adam Wierman
Na li, Changhong Zhao, Masoud Farvar
John Ledyard, Lingwen Gan, Desmond Cai, Adam Wierman
Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad
A case study in consumer-side challenges: Data centers

Zhenhua Liu, Minghong Lin, Adam Wierman, Yuan Chen
A case study in consumer-side challenges: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman, Yuan Chen

The good: Data centers have huge potential for providing DER/DR services
...they are large loads
...they have significant flexibility
...they are heavily instrumented and monitored
A case study in consumer-side challenges: Data centers

Zhenhua Liu, Minghong Lin, Adam Wierman, Yuan Chen

The good: Data centers have huge potential for providing DER/DR services

...they are large loads
...they have significant flexibility
...they are heavily instrumented and monitored

500 kW-100 MW each
Usage is growing fast
A case study in consumer-side challenges: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman, Yuan Chen

The good: Data centers have huge potential for providing DER/DR services

- they are large loads
- they have significant flexibility
- they are heavily instrumented and monitored

500 kW-100 MW each
Usage is growing fast

Load can be delayed and/or moved geographically

- 10% of consumption can be shed in 20min
- 5% of consumption can be shed in 2 min

[LBNL 2-year case study]

Backup generators & storage are typically on-site
A case study in consumer-side challenges: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman, Yuan Chen

The good: Data centers have huge potential for providing DER/DR services
...they are large loads
...they have significant flexibility
...they are heavily instrumented and monitored

The bad: But, they tend not to participate in DER/DR programs
...big overhead to prepare for active participation
...sophisticated programs viewed as too “risky”
...not convinced of profitability of programs

Our research fights these stereotypes
A case study in consumer-side challenges: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman, Yuan Chen

The bad: But, they tend not to participate in DER/DR programs
...big overhead to prepare for active participation
...sophisticated programs viewed as too “risky”
...not convinced of profitability of programs

Our research fights these stereotypes
Active participation in CPP yields 15-30% savings in energy costs!
A case study in consumer-side challenges: Data centers

Zhe

The bad: But, they tend not to participate in DER/DR programs
...big overhead to prepare for active participation
...sophisticated programs viewed as too “risky”
...not convinced of profitability of programs

Our research fights these stereotypes
Active participation in CPP yields 15-30% savings in energy costs!
A case study in consumer-side challenges: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman, Yuan Chen

The good: Data centers have huge potential for providing DER/DR services

...they are large loads
...they have significant flexibility
...they are heavily instrumented and monitored

The bad: But, they tend not to participate in DER/DR programs

...big overhead to prepare for active participation
...sophisticated programs viewed as too “risky”
...not convinced of profitability of programs

{ Our research fights these stereotypes }

Our view: Data centers are a great test case for any new market architecture
(A few) Key Challenges

1) Consumer-side challenges
 → Participation must be seamless (& profitable) for the consumer
 → Wide-spread participation requires aggregators/intermediaries

2) Social challenges
 → Avoid “energy poverty” & the “utility death spiral”
 → Direct control vs. voluntary participation

3) Utility-side challenges
 → Scalability & decentralized control

4) Economic challenges
 → What services is “economic control” feasible for?
 → Avoid dangers from magnifying market power

Case study: Data centers
Zhenhua Liu, Minghong Lin, Adam Wierman
Eilyan Bitar, Adam Wierman
Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low
Yunjian Xu, Adam Wierman
Lingwen Gan, Steven Low, Adam Wierman
Na li, Changhong Zhao, Masoud Farvar
John Ledyard, Lingwen Gan, Desmond Cai, Adam Wierman
Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesennian-Rad
A case study in social challenges: The “utility death spiral”
(Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low)
A case study in social challenges: The “utility death spiral”
(Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low)

- Increased DER adoption
- Reduced consumption of grid electricity
- Increased transmission & distribution infrastructure
- Increased electricity rates
A case study in social challenges: The “utility death spiral”
(Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low)

- Increased DER adoption
- Reduced consumption of grid electricity
- Increased transmission & distribution infrastructure
- Increased electricity rates
A case study in social challenges: The “utility death spiral”
(Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low)

The goal: Understand how significant this feedback is and understand what tariff/DR structures mitigate this feedback?
(A few) Key Challenges

1) Consumer-side challenges
 → Participation must be seamless (& profitable) for the consumer
 → Wide-spread participation requires aggregators/intermediaries

2) Social challenges
 → Avoid “energy poverty” & the “utility death spiral”
 → Direct control vs. voluntary participation

3) Utility-side challenges
 → Scalability & decentralized control

4) Economic challenges
 → What services is “economic control” feasible for?
 → Avoid dangers from magnifying market power

Case study: Data centers
 Zhenhua Liu, Minghong Lin, Adam Wierman
 Eilyan Bitar, Adam Wierman
 Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low
 Yunjian Xu, Adam Wierman
 Lingwen Gan, Steven Low, Adam Wierman
 Na Li, Changhong Zhao, Masoud Farvar
 John Ledyard, Lingwen Gan, Desmond Cai, Adam Wierman
 Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Traditional electricity markets: Danger of market manipulation is extreme

- Inelastic supply & Inelastic demand
 - Expensive storage
 - Limited short-run capacity
 - Limited price responsiveness
 - Limited exposure to real-time prices
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Traditional electricity markets: Danger of market manipulation is extreme and identifying “market power” is difficult

Inelastic supply & Inelastic demand
Expensive storage & Limited price responsiveness
Limited short-run capacity & Limited exposure to real-time prices
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Traditional electricity markets: Danger of market manipulation is extreme and identifying “market power” is difficult

- Inelastic supply
 - Expensive storage
 - Limited short-run capacity
- Inelastic demand
 - Limited price responsiveness
 - Limited exposure to real-time prices

Moving forward: Will DER/DR reduce or magnify market power?
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Traditional electricity markets: Danger of market manipulation is extreme and identifying “market power” is difficult

- Inelastic supply & Inelastic demand
 - Expensive storage
 - Limited short-run capacity
 - Limited price responsiveness
 - Limited exposure to real-time prices

Moving forward: Will DER/DR reduce or magnify market power?
...it makes both supply and demand more elastic
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Traditional electricity markets: Danger of market manipulation is extreme and identifying “market power” is difficult

- Inelastic supply & Inelastic demand
 - Expensive storage
 - Limited short-run capacity
 - Limited price responsiveness
 - Limited exposure to real-time prices

Moving forward: Will DER/DR reduce or magnify market power?
...it makes both supply and demand more elastic
...but also gives more chances to create/exploit price fluctuations
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Moving forward: Will DER/DR reduce or magnify market power?
...it makes both supply and demand more elastic
...but also gives more chances to create/exploit price fluctuations
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Moving forward: Will DER/DR reduce or magnify market power?
...it makes both supply and demand more elastic
...but also gives more chances to create/exploit price fluctuations
A case study in economic challenges: The dangers of market power
(Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad)

Moving forward: Will DER/DR reduce or magnify market power?
...it makes both supply and demand more elastic
...but also gives more chances to create/exploit price fluctuations

The goal: Develop new measures for market power that are appropriate DER/DR & incorporate the transmission system
(A few) Key Challenges

1) Consumer-side challenges
 → Participation must be seamless (& profitable) for the consumer
 → Wide-spread participation requires aggregators/intermediaries

2) Social challenges
 → Avoid “energy poverty” & the “utility death spiral”
 → Direct control vs. voluntary participation

3) Economic challenges
 → What services is “economic control” feasible for?
 → Avoid dangers from magnifying market power

Case study: Data centers
- Zhenhua Liu, Minghong Lin, Adam Wierman
- Eilyan Bitar, Adam Wierman
- Desmond Cai, Sachin Adlakha, Paul de Martini, Mani Chandy, Steven Low
- Yunjian Xu, Adam Wierman
- John Ledyard, Lingwen Gan, Desmond Cai, Adam Wierman
- Subhonmesh Bose, Chenye Wu, Adam Wierman, Hamed Mohesenian-Rad
The Pricing Predicament
What new wholesale DR/DER services should be offered?
...how should they be incorporated into the market?
...and how should they be priced?

A new market architecture is emerging...
The Pricing Predicament

What new wholesale DR/DER services should be offered?
...how should they be incorporated into the market?
...and how should they be priced?

A new market architecture is emerging...
The Pricing Predicament

What new wholesale DR/DER services should be offered?
...how should they be incorporated into the market?
...and how should they be priced?

A new market architecture is emerging...
The Pricing Predicament

What new wholesale DR/DER services should be offered?
...how should they be incorporated into the market?
...and how should they be priced?

A new market architecture is emerging...
Distributed energy resource services and pricing: A Caltech perspective (Adam Wierman)