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Abstract

Risk-limiting dispatch or RLD is formulated as the optimal solution to a multi-stage, stochastic de-
cision problem. At each stage, the system operator (SO) purchases forward energy and reserve capacity
over a block or interval of time. The blocks get shorter as operations approach real time. Each decision is
based on the most recent available information, including demand, renewable power, weather forecasts.
The accumulated energy blocks must at each t match the net demand D(t) = L(t)−W (t). The load L
and renewable power W are both random processes. The expected cost of a dispatch is the sum of the
costs of the energy and reserve capacity and the penalty or risk from mismatch between net demand
and energy supply. The paper derives computable ‘closed-form’ formulas for RLD. Numerical examples
demonstrate that the minimum expected cost can be substantially reduced by recognizing that risk from
current decisions can be mitigated by future decisions; by additional intra-day energy and reserve capac-
ity markets; and by better forecasts. These reductions are quantified and can be used to explore changes
in the SO’s decision structure, forecasting technology, and renewable penetration.

1 Introduction

States are setting ambitious goals for electricity from clean energy. California’s goal is 33% by 2020. The
goals are promoted by ‘renewable portfolio standards’ or RPS, which require electricity suppliers to produce
a specified fraction of their electricity from renewables. The system operator (SO) has the task of integrating
growing amounts of renewable power into the power grid.

The SO makes a sequence of decisions to balance the supply and load of electric power at every instant,
in the face of several unknowns: future load is uncertain; renewable generation is highly variable and un-
predictable; prices fluctuate. Forecasts of these variables have errors. The forecasts get more accurate as
observations accumulate with the approach of real time – when supply and load must be balanced.

Based on the forecasts, the SO purchases blocks of conventional power ahead of real time. The purchase
contracts guarantee delivery of power over a specified block or interval of time, with each block getting
shorter as operations approach real time. These blocks are accumulated by the SO, and “stacked” in a manner
of speaking, one upon another, so that the stack of conventional (dirty) power plus the renewable (clean)
power closely matches the real-time load. For example, in a four-step market process, the transactions might
be staggered as follows (see Figure 1):
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• 24 hour-ahead, SO purchases s1 for a 1 hour block;
• 1 hour-ahead, SO purchases s2 for a 30 minute block;
• 15 minutes-ahead, SO purchases s3 for a 5 minute block;
• 5 minutes-ahead, SO purchases s4 for a 1 minute block.

Figure 1: Power block si is purchased ti-ahead of real time t; net demand is D(t).

In addition to these forward or future energy purchases, the SO hedges against forecast errors and equipment
failure by purchasing reserve capacity. A reserve capacity contract is a call option: upon paying the option
price, the SO secures the right but not the obligation to purchase energy in a particular forward market.
We model such a reserve capacity contract as a two-part transaction comprising the purchase of a power
block in a forward market followed by a sale of that power if the reserve capacity is not utilized. (The
difference between the purchase and sale price is the price of the call option or the reserve capacity.) With
this model there is no need to distinguish between forward energy and capacity contracts, and the SO’s
decisions comprises a sequence of forward energy buy or sell transactions. The sequence of transactions is
called the dispatch.

This paper introduces Risk Limiting Dispatch or RLD. RLD is a formulation of the SO’s optimal dispatch
– the decisions that minimize the expected cost while ensuring adequate reliability. Let W (t) be the wind
power available to the SO. Let L(t) be the load. Both are stochastic processes. The difference D(t) =
L(t)−W (t) is the net demand. D(t) must be made up by the SO’s market transactions. There are m types
of markets, distinguished by the blocks or intervals (1 hour, 30 min, and so on) and how far ahead the block
must be purchased (24 hour-ahead, 1 hour-ahead, and so on). The cost of each power block is known in
advance.

At each t, the SO receives a measurement vector y(t) which provides information about W (t) and L(t). The
measurements may include current load and renewable power generation, and weather forecasts. A dispatch
policy specifies the market transactions to be undertaken at each t as a function of the available observations
Y (t) = {y(τ), τ ≤ t}. If S(t) is the power accumulated by the SO at real time t and the net demand is D(t)
there is a penalty (which may be infinite) if S(t) 6= D(t); the penalty measures operational risk. The RLD or
optimal dispatch policy minimizes the expected cost of the market transactions plus the penalty. Following
standard decision theory, RLD is formulated as the solution to a m-stage optimal stochastic control problem.

Contribution of the paper

We obtain a closed form solution to the RLD when the prices of power blocks are constant. (A computation-
ally more difficult closed form is obtained when the prices are not constant.) The random load, renewable
power and forecast error processes have arbitrary probability distributions. RLD has an appealing form.
Suppose the net cumulative purchases in the first (k− 1) markets is xk−1. With the information available
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just before the decision in the kth market is to be made, RLD computes two thresholds, ϕ
+
k < ϕ

−
k , using a

specified formula. In the kth market, if xk−1 < ϕ
+
k , RLD purchases the additional amount sk = ϕ

+
k −xk−1. If

xk−1 > ϕ
−
k , RLD sells the excess sk = xk−1−ϕ

−
k . If ϕ

+
k < xk−1 < ϕ

−
k−1, RLD makes no purchase or sale. If

we interpret the interval [ϕ+
k ,ϕ−k ] as the target, the SO’s optimum decision is to use the available information

to calculate this target and then make the smallest purchase or sale to bring the accumulated power into the
target interval.

It is commonly assumed that forecast errors are Gaussian. The thresholds then take the very simple form:

ϕ
+
k = µk +∆

+
k , ϕ

−
k = µk +∆

−
k . (1)

In formula (1), µk is the forecast of the net demand D(t) conditioned on the available information, and ∆
+
k ,∆−k

are pre-computable constants, which we call risk premiums. If the forecast has no error, the risk premiums
are zero, the target interval shrinks to a point {µk}, and the SO’s optimal decision is to accumulate supply
equal to the net demand forecast.

Usually of course there is a forecast error; ∆
+
k ,∆−k are then non-zero and can be regarded as the (optimal)

hedge against the risk or penalty of not matching the net demand. It may come as a surprise that when
the SO has future opportunities to change the accumulated power supply (k < m ), the risk premium is fre-
quently negative. The paper presents several numerical examples to show that RLD has substantially lower
cost than current dispatch procedures, outlined below. More importantly, the RLD closed-form solution pro-
vides a quantitative evaluation of the benefits of additional intra-day markets and better information. Such
quantitative results can inform the design of dispatch processes to integrate large amounts of renewables.

RLD was first formulated as a stochastic optimal control problem in [14], which gives the important property
of convexity of the value function and the first-order optimality conditions. Our study extends [14] in several
respects. First, we consider blocks of different duration, whereas [14] only permits a single duration, so
that (for example) the distinction between 24-hour ahead one-hour blocks and 15-min ahead 5-min load-
following blocks cannot be made. Also, [14] does not permit sale of energy, so reserve capacity cannot be
considered. The important RLD threshold property (when marginal costs are constant) and the simple form
(1) are not derived in [14], so the numerical examples we present would be very difficult to obtain. The
present paper generalized the 2-step RLD in [16].

Current practice

In practice the SO does not follow RLD. Instead for each market j = 1, · · · ,m, the SO makes the decision
that minimizes the immediate cost, based on the forecast, but neglecting the fact that future decisions based
on more accurate forecasts, will correct current decisions. Thus the current procedure is decoupled dispatch,
since each decision is determined independently of the others. Decision-theoretic considerations immedi-
ately imply that decoupled dispatch must incur a larger cost than the optimal dispatch RLD. The question
is: how large is the ‘cost gap’? Our numerical examples suggest that the gap is large.

California’s Independent System Operator (CAISO) has commissioned several studies to simulate its current
dispatch process to determine how much more reserve power will be needed to meet future 20 and 33 percent
RPS targets. (CAISO market operations are described in [3].) The basic simulation approach, developed in
[11], proceeds as follows. One takes a recorded trace of net demand for several days. Several forecast error
traces are then produced as Monte Carlo runs of a Gaussian process. The sum of a net demand trace and an
error trace is taken as a sample path of the net demand forecast, which is used to calculate the dispatch.

In the first stage 24 hour-ahead of real time, CAISO schedules one-hour blocks of power to match the hourly
demand forecast. Two hours ahead, the next hourly scheduled block is adjusted (up or down) to match
CAISO’s two hour-ahead forecast. In the second, real-time or balancing stage, 5-min blocks of power –
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called load following – are scheduled 15 min-ahead to compensate for the difference between the 15 min-
ahead forecast and the adjusted one-hour blocks. Lastly, there is a second-by-second purchase of energy
– called regulation power – to automatically compensate for frequency deviations resulting from demand-
supply mismatch. The resulting simulation gives the load-following and regulation power. These are random
quantities, which depend on the randomly generated forecast sample paths. The random quantities are
revealingly visualized in [7].

In order to simulate the impact of 20 or 33 percent RPS, the same procedure is followed [2, 4]. The only
modification is that one magnifies recorded traces of renewable power to create traces that meet the RPS
requirement. These studies find that large reserves are needed to absorb the variability of renewable power.
For example, [9] concludes that “the amount of regulation and imbalance [load-following] energy dispatched
in real time [. . . ] to maintain system performance within acceptable limits during morning and evening ramp
hours for 33 percent renewable cases in 2020 was 4,800 MW.” Such fast-acting energy is costly, and may
make meeting California’s 2020 goal of 33 percent renewable energy financially unsupportable. (The study
admits that the 4,800 MW requirement may be “optimistic, in that the impact of large forecast errors for
renewable production, especially forecast errors associated with wind production, were not studied.”)

The simulation studies show that most of the reserve requirements stem from the current CAISO practice of
stacking only two kinds (one-hour and 15-min) of power blocks. From Figure 1 one can see that if renewable
power (part of D(t) in the figure) exhibits large intra-hour variations (ramps), the burden of compensating
for such variations will fall on the 5-min load-following blocks and the balancing energy needs will be high.
However, if CAISO were also to schedule shorter blocks (30-min, 15-min, etc.) at shorter times ahead – and
hence with lower forecast errors – the reserve requirements would be lower. The increased flexibility gained
by such intra-day markets is advocated by NERC’s Task Force on Integrating Variable Generation [8].

Limitations of the paper

The RLD presented here and the above-referenced simulation studies have three limitations. First, they
ignore transmission constraints and losses. Second, they do not consider unit commitment (UC). UC intro-
duces integer-valued decision variables which increase the computational burden and preclude mathematical
analysis. Two studies [1, 13] include UC start-up costs, but computational complexity restricts them to a
2-stage dispatch, evaluated only via numerical examples. So these studies cannot predict the reduction in
needed reserves from intra-day markets or better information. Note, moreover, that once the unit commit-
ment decision is made, RLD indeed determines the optimal power block purchases.

The rest of the paper is organized as follows. The dispatch procedure is formulated as an m-stage stochastic
control problem in §2. The RLD optimality conditions are derived in §3. The special case of Gaussian
forecast errors is treated in §4. Two examples occupy §5. Conclusions are summarized in §6. Proofs are
collected in the Appendix.

2 Model of dispatch

The dispatch model specifies the SO’s energy supply, and formulates a dispatch policy and its cost.

2.1 Energy supply

Net load or demand is denoted by D(t) = L(t)−W (t), t ≥ 0, with L(t) and W (t) being the true load and
wind power. L and W are stochastic processes with arbitrary probability distributions. Time t is discrete,
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measured in hours. The dispatch constructs a supply S(t), t ≥ 0, by stacking up blocks of power purchased
in m markets. Blocks in the kth market have duration Tk, with T1 ≥ ·· · ≥ Tm. We assume that Tj−1 is a
multiple of Tj, Tj−1 = N jTj. These are the SO’s market transactions:

• SO buys (or sells) T1 blocks of magnitude s(k1) for the interval [k1T1, (k1 +1)T1], k1 = 0, · · · ,N1−1;

• For each k1, SO buys (or sells) T2 blocks of magnitude s(k1,k2) for the interval [k1T1 + k2,T2, k1T1 +
(k2 +1)T2], k2 = 0, · · · ,N2−1; . . .

• For each k1, · · · ,km−1, SO buys (or sells) Tm blocks of magnitude s(k1, · · · ,km) for the interval [k1T1 +
· · ·+ kmTm, k1T1 + · · ·+(km +1)Tm].

By convention, s(k1, · · · ,k j) > 0 or < 0 accordingly as a power block is purchased or sold. The power blocks
of Figure 2 are stacked to form the energy supply function over the time horizon [0,N1T1], which is hours or
days long.

The array of power blocks {s(k1, · · · ,k j)} delivers power S(t) at real time t:

S(t) = s(k1)+ s(k1,k2)+ · · ·+ s(k1, · · · ,km), t ∈ [k1T1 + · · ·+ kmTm, k1T1 + · · ·+(km +1)Tm]. (2)

t
s(k1)

0

0

0

t

t

s(k1, k2)

s(k1, k2, ..., km)

T1

T2

Tm

. . .

Figure 2: Supply S(t) is constructed by stacking blocks of duration T1, · · · ,Tm.
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2.2 Dispatch policy

A dispatch policy selects block s(k1, · · · ,k j) at the pre-specified market closing time t(k1, · · · ,k j). We as-
sume that for all j

t(k1, · · · ,k j) ≤ k1T1 + · · ·+ k jTj, (3)

t(k1, · · · ,k j) ≤ t(k1, · · · ,k j,k j+1). (4)

Assumption (3) says that power must be purchased before it is delivered. Typically the market closes a fixed
time ahead, e.g., t(k1) = k1T1− 24 for the 24 hours-ahead energy market. Assumption (4) is an intuitive
requirement: block s(k1) must be purchased before its sub-blocks s(k1,k2), which must be purchased before
its sub-blocks s(k1,k2,k3), and so on.

We assume that the blocks s(k1), · · · ,s(k1, · · · ,km) can be selected independently. This assumption is vi-
olated if generators impose inter-temporal constraints on successive power blocks. For example, some
generators have a minimum power-on duration, and some (e.g. stored hydro) have a total energy constraint.

The net demand D(t) = L(t)−W (t) is random because the load L(t), wind power W (t), or both are random.
Forced outages of generation or other equipment are readily modeled as random increases in load as in [5].
At time t an observation y(t) provides information about the net demand. The observations up to t comprise
the array Y (t) = {y(τ), τ≤ t}.

The selection of block s(k1, · · · ,k j) is based on the available information, so s(k1, · · · ,k j) is a function of
Y (t(k1, · · · ,k j)). Formally s(k1, · · · ,k j) is adapted to the σ-field Y (t(k1, · · · ,k j)) generated by the random
variables Y (t(k1, · · · ,k j)). A dispatch policy π for the interval [0,N1T1] is any array of functions,

π = {s(k1, · · · ,k j) is adapted to Y (t(k1, · · · ,k j)}. (5)

Figure 3: Dispatch policy π selects s(k1, · · · ,k j) as a function of Y (t(k1, · · · ,k j)).

An initial block of power z(k1) has been secured before time k1T1, as the result of actions (such as must-run
generation) taken outside of our decision problem. If z(k1) is random, it must be Y (t(k1))-adapted, so its
value is known when s(k1) is to be selected.

Let x(k1, · · · ,k j) be the total power secured just after s(k1, · · · ,k j) is selected:

x(k1, · · · ,k j) = z(k1)+ s(k1)+ s(k1,k2)+ · · ·+ s(k1, · · · ,k j). (6)
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We regard x(k1, · · · ,k j) as the state and s(k1, · · · ,k j) as the decision at stage (k1, · · · ,k j), based on the
observations Y (t(k1, · · · ,k j)). The state satisfies the update equation (see Figure 3):

x(k1, · · · ,k j) = x(k1, · · · ,k j−1)+ s(k1, · · · ,k j), j = 1, · · · ,m. (7)

s(k1, · · · ,k j) may be positive or negative accordingly as power is purchased or sold. The power eventually
delivered at real time t ∈ [k1T1 + · · ·kmTm, k1T1 + · · ·(km +1)Tm] is x(k1, · · · ,km).

2.3 Cost and penalty

The cost of block s = s(k1, · · · ,k j) is a known convex function C(k1, · · · ,k j;s). At first, we consider the case
when the marginal cost is constant:

C(k1, · · · ,k j;s) =
{

c+(k1, · · · ,k j)× s, s = s+ ≥ 0
c−(k1, · · · ,k j)× s, s = s− ≤ 0

.

c+(k1, · · · ,k j) and c−(k1, · · · ,k j) are unit prices for buying and selling power during [k1T1 + · · ·k jTj, k1T1 +
· · ·(k j +1)Tj] so the cost of block s(k1, · · · ,k j) is

Tj[c+(k1, · · · ,k j)s+(k1, · · · ,k j)+ c−(k1, · · · ,k j)s−(k1, · · · ,k j)].

The expected cost of a policy π for the interval [0,N1T1] is

J(π) = E
{

T1

N1−1

∑
k1=0

[c+(k1)s+(k1)+ c−(k1)s−(k1)]

+ T2

N1−1

∑
k1=0

N2−1

∑
k2=0

[c+(k1,k2)s+(k1,k2)+ c−(k1,k2)s−(k1,k2)]

+ · · ·

+ Tm

N1−1

∑
k1=0

N2−1

∑
k2=0
· · ·

Nm−1

∑
km=0

[c+(k1, · · · ,km)s+(k1, · · · ,km)+ c−(k1, · · · ,km)s−(k1, · · · ,km)]

+ Tm

N1−1

∑
k1=0

N2−1

∑
k2=0
· · ·

Nm−1

∑
km=0

[g(d(k1, · · · ,km), x(k1, · · · ,km))]
}

(8)

In (8), E denotes mathematical expectation. Except for the last term, the right hand side in (8) is the
energy cost for the interval [0,N1T1]. In the last term in (8) d(k1, · · · ,km) is the net demand, x(k1, · · · ,km)
is the power supplied, and Tm[g(d(k1, · · · ,km), x(k1, · · · ,km))] is the risk or penalty of imbalance during
[k1T1 + · · ·+ kmTm, k1T1 + · · ·+(km +1)Tm]. The total cost J(π) is energy cost plus the imbalance penalty.

Risk-limiting dispatch or RLD is the policy π∗ that minimizes the cost J(π):

J(π∗) = min
π

J(π)

s.t. (5) (9)

RLD π∗ is determined in §3 under the following restrictions on the prices c+, c− and the penalty g.

Restriction on prices In order to avoid trivial cases the prices satisfy

c+(k1, · · · ,km) > c+(k1, · · · ,km−1) > · · ·> c+(k1) > c−(k1) > · · ·> c−(k1, · · · ,km−1) > c−(k1, · · · ,km). (10)
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Suppose to the contrary that c+(k1, · · · ,k j+1) < c+(k1, · · · ,k j). Then the cost (8) is reduced by post-
poning purchase of s+(k1, · · · ,k j) from time t(k1, · · · ,k j) to the later time t(k1, · · · ,k j+1) (see (4)), so
s+(k1, · · · ,k j) will be zero. Similarly, if c−(k1, · · · ,k j+1) > c−(k1, · · · ,k j), the cost is lowered by post-
poning the sale of s−(k1, · · · ,k j) to the later time t(k1, · · · ,k j+1), so s−(k1, · · · ,k j) will be zero. Lastly, if
c+(k1, · · · ,k j) < c−(k1, · · · ,k j) one can make arbitrarily large profits simply by buying and selling equal
amounts s+(k1, · · · ,k j) = s−(k1, · · · ,k j), which is not meaningful. One consequence of (10) is that in any
cost-minimizing policy, one will have

s+(k1, · · · ,k j) = 0 or s−(k1, · · · ,k j) = 0. (11)

Restriction on penalty The assumption is:

g(d,x) is nonnegative and convex in x for each d. (12)

We give important forms of penalty below. In many cases g(d,x) is decreasing in x.

Value of lost load (VOLL) With

g(d,x) = γ
+(k1, · · · ,km)[d− x]+, (13)

Tm[g(d(k1, · · · ,km), x(k1, · · · ,km))] is the value of lost load (VOLL) in [k1T1 + · · ·+ kmTm, k1T1 + · · ·+
(km + 1)Tm] when the supply is insufficient to serve the demand. γ+(k1, · · · ,km) is the social cost of power
interruption; its value is $1,000-10,000 per MWh. g specified by (13) is decreasing and convex.

Loss of load probability (LOLP) Because it accounts for uncertainty, LOLP is considered a better measure
of reliability than the traditional deterministic ‘reserve margin’, especially when intermittent sources are
significant [5]. The use of LOLP to specify a risk target in system operations is also advocated in [12, 18]:
the supply S must be such that the LOLP during the interval [0,N1T1] is bounded by a pre-specified target
value α≥ 0. This is equivalent to the constraint

P{d(k1, · · · ,km) > x(k1, · · · ,km) | Y (t(k1, · · · ,km))} ≤ α. (14)

Define the loss function

g(d,x) =
{

∞, if P{d(k1, · · · ,km) = d > x(k1, · · · ,km) = x | Y (t(k1, · · · ,km))}> α

0, otherwise
. (15)

g specified by (15) is decreasing and convex in x. Resorting to infinite values in (15) can be eliminated by
the following observation. The least supply x with LOLP at most α is the α-quantile Φα:

Φα(k1, · · · ,km) = inf{x | P(d(k1, · · · ,km) > x | Y (t(k1, · · · ,km))≤ α}. (16)

Φα(k1, · · · ,km) is a function of Y (t(k1, · · · ,km)), and the penalty (15) will be finite only if

x(k1, · · · ,km)≥Φα(k1, · · · ,km), a.s.. (17)

Since x(k1, · · · ,km) = x(k1, · · · ,km−1)+ s(k1, · · · ,km), the least-cost decision at stage (k1, · · · ,km) that satis-
fies (17) is

s∗+(k1, · · · ,km) = [Φα(k1, · · · ,km)− x(k1, · · · ,km−1)]+,

s∗−(k1, · · · ,km) = [Φα(k1, · · · ,km)− x(k1, · · · ,km−1)]−.
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The cost of this decision is g(x(k1, · · · ,km−1)), wherein

g(x) = c+(k1, · · · ,km)[Φα(k1, · · · ,km)− x]+ + c−(k1, · · · ,km)[Φα(k1, · · · ,km)− x]−. (18)

Hence we can replace the m-stage cost (8) with constraint (14) by the 9m−1)-stage cost

J(π) = E
{

T1

N1−1

∑
k1=0

[c+(k1)s+(k1)+ c−(k1)s−(k1)]+ · · ·+Tm−1

N1−1

∑
k1=0

N2−1

∑
k2=0
· · ·

Nm−1−1

∑
km−1=0

[g(x(k1, · · · ,km−1))]
}
.

Note that g(x) given by (18) is convex and decreasing in x because, by (10), c−(k1, · · · ,km)≤ c+(k1, · · · ,km).

Reserve-at-risk (RaR) Inequality (17) is related to RaR introduced in [18] in analogy with ‘value at risk’
used in finance [17]. Call

r = r(k1, · · · ,km) = x(k1, · · · ,km)−d(k1, · · · ,km)

the reserve; then RaRα = x(k1, · · · ,km)−Φα(k1, · · · ,km) is the reserve-at-risk (at level α). At time t(k1, · · · ,km)
the net demand d(k1, · · · ,km) and hence the reserve r may not be known. But because of (16), the reserve-
at-risk RaRα is known. As

P{r < RaRα | Y (t(k1, · · · ,km))}= P{d > Φα(k1, · · · ,km) | Y (t(k1, · · · ,km))} ≤ α,

the reserve r falls below RaRα with probability at most α. Equivalently, (17) ensures that the reserve exceeds
RaRα with probability at least (1−α).

If there is agreement about the appropriate value of α (say, 1%), RaRα can serve as a reserve target for the
SO. At any time a negative RaRα indicates that SO should increase the reserve by the same amount in order
to maintain the required level of operational reliability, but with a positive RaRα the operator knows that the
reliability level is higher than required [18].

Conditional reserve at risk The event that the reserve drops below RaRα occurs with probability α, and
one measure of the risk when this event occurs is the conditional reserve at risk:

CRaRα =−E{r | r < RaRα, Y (t(k1, · · · ,km))}=
1
α

∫
∞

Φα

(δ− x)p(δ)dδ, (19)

in which r = x− δ = x(k1, · · · ,km)− d(k1, · · · ,km), p(δ) = p(d = δ | Y (t(k1, · · · ,km)) is the probability
density of the net demand d conditional on Y (t(k1, · · · ,km)). The interpretation of (19) is this. Suppose
at some time t(k1, · · · ,km), RaRα = 100MW, CRaRα = 600MW. Then the loss of load is expected to be
600MW if the reserve drops below 100MW. CRaRα is decreasing and convex in x. There are instructive
calculations of RaRα and CRaRα in [18].

Cost of excessive generation Random large amounts of wind power can cause net demand d = d(k1, · · · ,km)
to drop below the supply x = x(k1, · · · ,km). A penalty may then be assessed

g(d,x) = γ
−(k1, · · · ,km)[x−d]+,

which may be combined with (13) into the convex penalty function

g(d,x) = γ
+[d− x]+ + γ

−[x−d]+.

In this case, it may be less costly to curtail wind at stage m, so RLD would select s∗(k1, · · · ,km) < 0.
Alternatively, one may replace (14) with

P{d(k1, · · · ,km) < x(k1, · · · ,km) | Y (t(k1, · · · ,km))} ≤ α,

and define the risk from wind on-ramps as a ‘wind curtailment at risk’ (WCaR) similarly to RaR.
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2.4 Wind aggregator

A wind aggregator may contract to deliver blocks of firm power L(k1) at a fixed price c−(k1) during
[k1T1,(k1 + 1)T1]. The contracted power combines wind W (t) and conventional power supply S(t). The
aggregator wants to minimize the expected net cost,

−∑
k1

c−(k1)L(k1)+ J(π),

in which the first term is the negative of the revenue and the second term is the cost (8). The aggregator’s
RLD gives the optimum blocks L∗(k1) that the aggregator should contract. The aggregator’s cost is well
modeled by constant prices, whereas the SO’s cost may be better specified by a cost function.

3 Optimality conditions

Most of this section is concerned with the case of constant prices. The case of a cost function is treated in
Theorem 3. For any policy π the cost-to-go in state x = x(k1, · · · ,k j−1) at stage (k1, · · · ,k j) conditional on
the information available at t(k1, · · · ,k j) is (see Figure 3)

J(π,x,k1, · · · ,k j) = E
{

Tj[c+(k1, · · · ,k j)s+(k1, · · · ,k j)+ c−(k1, · · · ,k j)s−(k1 · · ·k j)]

+ Tj+1

N j+1−1

∑
k j+1=0

[c+(k1, · · · ,k j+1)s+(k1, · · · ,k j+1)+ c−(k1, · · · ,k j+1)s−(k1 · · ·k j+1)]

+ Tj+2

N j+1−1

∑
k j+1=0

N j+2−1

∑
k j+2=0

[c+(k1, · · · ,k j+2)s+(k1, · · · ,k j+2)+ c−(k1, · · · ,k j+2)s−(k1 · · ·k j+2)]

· · ·

+ Tm

N j+1−1

∑
k j+1=0

· · ·
Nm−1

∑
km=0

[c+(k1, · · · ,km)s+(k1, · · · ,km)+ c−(k1, · · · ,km)s−(k1, · · · ,km)]

+ Tm

N j+1−1

∑
k j+1=0

· · ·
Nm−1

∑
km=0

[g(d(k1, · · · ,km), x(k1, · · · ,km))] | Y (t(k1, · · · ,k j))
}
.

The value function in state x = x(k1, · · · ,k j−1) at stage (k1, · · · ,k j) is defined as

J∗(x,k1, · · · ,k j) = inf
π

J(π,x,k1 · · ·k j). (20)

J∗(x,k1, · · · ,k j) is a function of Y (t(k1, · · · ,k j)), that is, it is Y (t(k1, · · · ,k j))-adapted.

Recalling the constraint (5), stochastic dynamic programming considerations [10] lead to the next result.

Lemma 1 The value function satisfies the following backward iteration. In state x = x(k1, · · · ,km−1) at the
terminal stage (k1, · · · ,km),

J∗(x,k1, · · · ,km) = inf
s+≥0≥s−

{Tm[c+(k1, · · · ,km)s+ + c−(k1, · · · ,km)s−]

+ TmE[g(d(k1, · · · ,km),x+ s+ + s−) | Y (t(k1, · · · ,km))]} a.s. (21)
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and for j ≤ m−1, in state x = x(k1, · · · ,k j−1) at stage (k1, · · · ,k j),

J∗(x,k1, · · · ,k j) = inf
s+≥0≥s−

{
Tj[c+(k1, · · · ,k j)s+ + c−(k1, · · · ,k j)s−]

+
N j+1−1

∑
k j+1=0

E
[
J∗(x+ s+ + s−,k1, · · · ,k j+1) | Y (t(k1, · · · ,k j))

]}
a.s. (22)

Moreover, the minimizing s+, s− in (21)-(22) are the optimal decisions s∗+(k1, · · · ,k j), s∗−(k1, · · · ,k j).

Definition For a convex, differentiable function f (s), s≥ 0, define

∇ f (ϕ) =
{
{(∂ f /∂s)(ϕ)} ϕ > 0
{γ≤ (∂ f /∂s)(0)} ϕ = 0

,

and its partial inverse [∇ f ]−1:

[∇ f ]−1(γ) = min{ϕ≥ 0 | γ ∈ ∇ f (ϕ)}.

If f (s) is random and adapted to the σ-field Y for each s, [∇ f ]−1(γ) is adapted to Y for each γ. If Y ′ is a
sub-σ-field of Y ,

∇E{ f | Y ′}(ϕ) = E{∇ f (ϕ) | Y ′}.

Theorem 1 The value function J∗(x,k1, · · · ,k j), j ≤ m, has the following properties.
1. J∗(x,k1, · · · ,k j) is Y (t(k1, · · · ,k j))-adapted and convex.
2. There are Y (t(k1, · · · ,k j))-adapted thresholds ϕ±(k1, · · · ,k j) that give the optimal decision in state x =
x(k1, · · · ,k j−1) as

s∗+(x,k1, · · · ,k j) = [ϕ+(k1, · · · ,k j)− x]+, s∗−(x,k1, · · · ,k j) = [ϕ−(k1, · · · ,k j)− x]−. (23)

3. The thresholds ϕ±(k1, · · · ,k j) do not depend on the state x. At the terminal stage

ϕ±(k1, · · · ,km) =
[
∇(Tmĝ(d(k1, · · · ,km)))

]−1(−Tmc±(k1, · · · ,km)), (24)

ĝ(d(k1, · · · ,km),z) = E{g(d(k1, · · · ,km),z) | Y (t(k1, · · · ,km))}, (25)

and for j ≤ m−1,

ϕ±(k1, · · · ,k j) =
[
∇(

N j+1−1

∑
k j+1=0

Ĵ(k1, · · · ,k j+1))
]−1(−Tjc±(k1, · · · ,k j)) (26)

Ĵ(z,k1, · · · ,k j+1) = E{J∗(z,k1, · · · ,k j+1) | Y (t(k1, · · · ,k j))}. (27)

4. The value function iteration for the terminal stage is

J∗(x,k1, · · · ,km) = Tm[c+(m)s∗+(m)+c−(m)s∗−(m)]+TmE{g(d(k1, · · · ,km),x) | Y (t(k1, · · · ,km))}, (28)
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and for j ≤ m−1 it is

J∗(x,k1, · · · ,k j) = Tj[c+( j)s∗+( j)+ c−( j)s∗−( j)]

+
N j+1−1

∑
k j+1=0

E{J∗(x+ s∗+( j)+ s∗−( j),k1, · · · ,k j+1) | Y (t(k1, · · · ,k j))}, (29)

In (28)-(33) c±( j) = c±(k1, · · · ,k j), s∗±( j) = s∗±(x,k1, · · · ,k j), j ≤ m.

5. Lastly, for all x and γ ∈ ∇J∗(x,k1, · · · ,k j)

Tjc−(k1, · · · ,k j)≤−γ≤ Tjc+(k1, · · · ,k j). (30)

Proof See Appendix A. �

Theorem 2 gives a recursive ‘closed-form’ formula for the thresholds.

Theorem 2 At the terminal stage, ϕ±(m) is the solution of the equation

fm(x) = Tmc±(m), (31)

with

fm(x) =−TmEm{∇g(x)}. (32)

At stage (k1, · · · ,k j), j ≤ m−1, ϕ±( j) is the solution of the equation

f j(x) = f (k1, · · · ,k j,x) = Tjc±( j), (33)

with

f j(x) =
N j+1−1

∑
k j+1=0

[
+Tj+1c+( j +1)Pj(x≤ ϕ+( j +1))
+Tj+1c−( j +1)Pj(x≥ ϕ−( j +1))

+
N j+2−1

∑
k j+2=0

[
Tj+2c+( j +2)Pj(x≤ ϕ+( j +2),ϕ+( j +1) < x < ϕ−( j +1))

+Tj+2c−( j +2)Pj(x≥ ϕ−( j +2),ϕ+( j +1) < x < ϕ−( j +1))

+
N j+3−1

∑
k j+3=0

[
Tj+3c+( j +3)Pj(x≤ ϕ+( j +3),ϕ+( j +2) < x < ϕ−( j +2),ϕ+( j +1) < x < ϕ−( j +1))

+Tj+3c−( j +3)Pj(x≥ ϕ−( j +3),ϕ+( j +2) < x < ϕ−( j +2),ϕ+( j +1) < x < ϕ−( j +1))
· · ·

+
Nm−1

∑
km=0

[
Tmc+(m)Pj(x≤ ϕ+(m),ϕ+(m−1) < x < ϕ−(m−1), · · · ,ϕ+( j +1) < x < ϕ−( j +1))

+Tmc−(m)Pj(x≥ ϕ−(m),ϕ+(m−1) < x < ϕ−(m−1), · · · ,ϕ+( j +1) < x < ϕ−( j +1))
−TmE j{∇g(x)1(ϕ+(m) < x < ϕ−(m), · · · ,ϕ+( j +1) < x < ϕ−( j +1))}

]
· · ·
]]]

(34)
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f j(x) =−E{
N j+1−1

∑
k j+1=0

∇J∗(x,k1, · · · ,k j+1) | Y (t(k1, · · · ,k j))}, j ≤ m−1. (35)

The functions f j(x) are all non-negative, decreasing functions of x. Moreover

f j(x) =−E{
N j+1−1

∑
k j+1=0

∇J∗(x,k1, · · · ,k j+1) | Y (t(k1, · · · ,k j))}, j ≤ m−1. (36)

Above

∇g(x) = ∇g(d(k1, · · · ,km), x), c±( j) = c±(k1, · · · ,k j), ϕ±( j) = ϕ±(k1, · · · ,k j); and

E j(χ) = E{χ | Y (t(k1, · · · ,k j)}, Pj(A) = E{1(A) | Y (t(k1, · · · ,k j)}

denote the conditional expectation and conditional probability of the random variable χ and event A.

Proof See Appendix B. �

Theorem 3 deals with the case when the marginal cost is not constant. The cost of policy π is

J(π) = E
{

T1

N1−1

∑
k1=0

C(k1;s1(k1))+T2

N1−1

∑
k1=0

N2−1

∑
k2=0

C(k1,k2;s(k1,k2))

+ · · ·

+ Tm

N1−1

∑
k1=0

N2−1

∑
k2=0
· · ·

Nm−1

∑
km=0

[C(k1, · · · ,km;s(k1, · · · ,km))+g(d(k1, · · · ,km), x(k1, · · · ,km))]
}
.

Above, C(k1, · · · ,k j;s) is convex in s, and s > 0 or < 0, accordingly as a block is purchased or sold. g(d, ·)
is the convex terminal penalty. The value function is defined in (20).

Lemma 1 holds with obvious changes: in state x = x(k1, · · · ,km−1),

J∗(x,k1, · · · ,km) = inf
s
{TmC(k1, · · · ,km;s)+TmE[g(d(k1, · · · ,km,x+ s | Y (t(k1, · · · ,km)]}a.s. (37)

and for j ≤ m−1, in state x(k1, · · · ,k j−1) at stage (k1, · · · ,k j),

J∗(x,k1, · · · ,k j) = inf
s
{TjC(k1, · · · ,k j;s)+

N j+1−1

∑
k j+1=0

E[J∗(x+ s,k1, · · · ,k j) | Y (t(k1, · · · ,k j))]}a.s. (38)

Moreover, the minimizing s in (37)-(38) is the optimum decision.

Theorem 3 The value function J∗(x,k1, · · · ,k j), j ≤m, is convex and Y (k1, · · · ,k j)-adapted. The optimum
decision s∗(k1, · · · ,km) in state x = x(k1, · · · ,km−1) at the terminal stage (k1, · · · ,km) is the solution s of

−Tmc(k1, · · · ,km;s) = Tm
∂ĝ
∂s

(d(k1, · · · ,km),x+ s), (39)

ĝ(d,x+ s) = E{g(d,x+ s) | Y (t(k1, · · · ,km))}, (40)
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and for j ≤ m−1, the optimal decision s∗(k1, · · · ,k j) in state x = x(k1, · · · ,k j−1) at stage (k1, · · · ,k j) is the
solution s of

−Tjc(k1, · · · ,k j;s) =
∂

∂s

N j+1−1

∑
k j+1=0

Ĵ(x+ s,k1, · · · ,k j+1) (41)

Ĵ(x+ s,k1, · · · ,k j+1) = E{J(x+ s,k1, · · · ,k j+1) | Y (t(k1, · · · ,k j))} (42)

Above c(k1, · · · ,k j,s) = ∂C/∂s(k1, · · · ,k j;s) denotes the marginal cost.

Proof See Appendix C. �

4 Gaussian forecast errors

Formulas (31)-(34) become very simple when forecast errors are Gaussian, as in [5, 2, 11, 6, 7]. The precise
assumption is as follows.

Assumption
The net demand d(k1, · · · ,km) can be expressed as

d(k1, · · · ,km) = d̄(k1, · · · ,km)+ ε(k1)+ · · ·+ ε(k1, · · · ,km), (43)

in which:

• d̄(k1, · · · ,km) is Y (t(k1)) adapted;

• ε(k1, · · · ,k j) is Y (t(k1, · · · ,k j+1)) adapted and independent of Y (t(k1, · · · ,k j));

• ε(k1), · · · ,ε(k1, · · · ,km) are independent Gaussian random variable with zero mean and standard devi-
ation σ(k1, · · · ,k j).

Under this assumption, the forecast of d(k1, · · · ,km) at time t(k1, · · · ,k j), based on Y (t(k1, · · · ,k j)), is

µ(k1, · · · ,k j) = d̄(k1, · · · ,km)+ ε(k1)+ · · ·+ ε(k1, · · · ,k j−1). (44)

The forecast error

d(k1, · · · ,km)−µ(k1, · · · ,k j) = ε(k1, · · · ,k j)+ · · ·+ ε(k1, · · · ,km)

is Gaussian with zero mean and variance

σ
2(k1, · · · ,k j)+ · · ·+σ

2(k1, · · · ,km).

Thus the new observations at t(k1, · · · ,k j) adds the ‘correction’ ε(k1, · · · ,k j−1) to the previous forecast
µ(k1, · · · ,k j−1) and reduces the error variance by σ2(k1, · · · ,k j−1).

Lemma 2 Suppose the penalty is (13):

g(d(k1, · · · ,km),x) = γ
+(k1, · · · ,km)[d(k1, · · · ,km)− x]+.

Then there exist pre-computable deterministic functions ψ(k1, · · · ,k j, ·) such that f (k1, · · · ,k j,x) in (32),
(33) is given by

f (k1, · · · ,k j,x) = ψ(k1, · · · ,k j,x−µ(k1, · · · ,k j)). (45)
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Proof See Appendix D, which also shows how to calculate ψ. �

Theorem 4 If the penalty is (13), the optimal thresholds are given by

φ±(k1, · · · ,k j) = µ(k1, · · · ,k j)+∆±(k1, · · · ,k j), (46)

in which the constant risk premiums ∆±(k1, · · · ,k j) can be computed ahead of time.

Proof Substituting (45) into (31), (33) shows that φ±( j) is the solution of

ψ(k1, · · · ,k j,x−µ(k1, · · · ,k j)) = Tjc±(k1, · · · ,k j)).

Hence by selecting ∆±(k1, · · · ,k j) so that

ψ(k1, · · · ,k j,∆±(k1, · · · ,k j))) = Tjc±(k1, · · · ,k j)), (47)

one obtains (46). �

The optimal policy is implemented by the following procedure.

Stage 0: Compute the risk premiums ∆±(k1, · · · ,k j) by solving (47).

Stage k1: At time t(k1), obtain the forecast µ(k1), and calculate the thresholds

φ±(k1) = µ(k1)+∆±(k1).

Suppose z = z(k1) is the initial supply. The optimal decision s∗(z,k1) is given by:

s∗(z,k1) =


φ+(k1)− z, if φ+(k1)− z > 0
0, if φ+(k1) < z < φ−(1)
−[z−φ−(k1)], if φ−(k1) < z

(48)

Stage k1, · · · ,k j: At time t(k1, · · ·k j) update the forecast µ(k1, · · · ,k j) = µ(k1, · · · ,k j−1)+ ε(k1, · · · ,km), and
calculate the thresholds

φ±(k1, · · · ,k j) = µ(k1, · · · ,k j)+∆±(k1, · · · ,k j).

The optimal decision in state x = x(k1, · · · ,k j−1) is given by:

s∗(x,k1, · · · ,k j) =


φ+(k1, · · · ,k j)− x, if φ+(k1, · · · ,k j)− x > 0
0, if φ+(k1, · · · ,k j) < x < φ−(k1, · · · ,k j)
−[x(k1, · · · ,k j−1)−φ−(k1, · · · ,k j)], if φ−(k1, · · · ,k j) < x

(49)

If the supply x acquired up to stage (k1, · · · ,k j) is smaller than the lower threshold, an energy block equal to
the shortfall must be purchased; if the acquired supply is larger than the upper threshold, the excess must be
sold.
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5 Two examples

Two examples are worked out in this section. The first uses formulas (32)-(34). The second uses formula
(46) for the Gaussian case. To simplify the notation and calculations we assume

T1 = · · ·= Tm = 1; N1 = · · ·= Nm = 1; c−(1) = · · ·= c−(m) = 0.

We write c+(k) = c(k). Because c−( j) = 0, it does not pay to sell any capacity, so s∗−( j) = 0, and we write
s( j) = s+( j), s−( j) = 0. The decision s( j) is taken at time t( j). The thresholds are denoted ϕ+( j) = ϕ( j)
and ϕ−( j) = ∞ (which is equivalent to s∗−( j) = 0).

The cost of policy π is

J(π) = E{
M

∑
j=1

c( j)s( j)+g(d(m),x(m))}.

The RLD dispatch is

s∗( j) = [ϕ( j)− x( j−1)]+.

We assume that d(m) is observed at the last decision time t(m), and require the net demand to be met with
probability one. So the penalty is (15) with α = 0. Write c(m+1) = ∞. Then ∇g(d,x) =−c(m+1)1(x < d),
so (31)-(32) give the threshold in stage m,

ϕ(m) = d(m). (50)

Henceforth we write d(m) = d. For j≤m−1, (31)-(34) show that the threshold ϕ( j) is the solution x of the
equation

c( j) = c( j +1)Pj(x≤ ϕ( j +1))+ c( j +2)Pj(x≤ ϕ( j +2),ϕ( j +1) < x)+ · · ·
+ c(m)Pj(x≤ ϕ(m),ϕ(m−1) < x, · · · ,ϕ( j +1) < x)
+ c(m+1)Pj(x < d,ϕ(m) < x, · · · ,ϕ( j +1) < x). (51)

Divide both sides by c( j +1); then ϕ( j) is the solution of the equation

Fj(x) =
c( j)

c( j +1)
, (52)

in which

Fj(x) = Pj(x≤ ϕ( j +1))+
c( j +2)
c( j +1)

Pj(x≤ ϕ( j +2),ϕ( j +1) < x)+ · · ·

+
c(m)

c( j +1)
Pj(x≤ ϕ(m),ϕ(m−1) < x, · · · ,ϕ( j +1) < x)

+
c(m+1)
c( j +1)

Pj(x < d,ϕ(m) < x, · · · ,ϕ( j +1) < x). (53)

In (53), Pj(A) is the probability of event A, conditioned on Y (t( j)). Expression (53) is evaluated in reverse
order j = m−1, · · · ,1, starting with ϕ(m) = d. At stage (m−1)

Fm−1(x) = Pm−1(x≤ ϕ(m)) = P{x≤ d | Y (t(m−1))}=
c(m−1)

c(m)
. (54)
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Figure 4: Threshold ϕ(m−1) is the c(m−1)/c(m)-quantile of Fm−1.

Figure 4 depicts Fm−1(x), and shows that ϕ(m− 1) is the c(m− 1)/c(m)-quantile of Fm−1(x) = P{d ≥
x | Y (t(m−1)}. ϕ(m−1) is a function of Y (t(m−1)).

We now evaluate Fm−2(x) from (53):

Fm−2 = Pm−2(x≤ ϕ(m−1))+
c(m)

c(m−1)
Pm−2(x≤ ϕ(m),ϕ(m−1) < x)

= P{x≤ ϕ(m−1) | Y (t(m−2))}+ c(m)
c(m−1)

P{ϕ(m−1) < x < d | Y (t(m−2))}

=
c(m−2)
c(m−1)

. (55)

Thus ϕ(m− 2) is the c(m− 2)/c(m− 1)-quantile of the complementary distribution function Fm−2(x).
From (55) we see that to calculate Fm−2(x) one needs the joint distribution of ϕ(m− 1) and ϕ(m) = d,
conditioned on Y (t(m− 2)). In general, the calculation of ϕ( j), Fj(x) needs the joint distribution of
ϕ(m) = d,ϕ(m− 1), · · · ,ϕ( j + 1), conditioned on Y (t( j)). The calculation can be automated to fit the
form of the observations.

5.1 Example 1

Take m = 3, c(1) = 50,c(2) = 100,c(3) = 1,000. Purchases are made at t(1), t(2), t(3). At t(3), d is
observed, so

ϕ(3 | d) = d.

At t(2) a weather forecast arrives. It has two possible values, L (low demand) or H (high demand), each
with probability 0.5. The distribution of d conditioned on the forecast is

P(d | L) = U [−2,1], P(d | H) = U [−1,2].

(U [a,b] is the uniform distribution over [a,b].) The threshold at stage 2 is given by solving (55):

F2(x | ω) = P{x≤ d | ω}= c(2)/c(3) = 100/1000 = 0.1, ω = L,H. (56)

Using P(d | L) = U [−2,1], P(d | H) = U [−1,2] in (55) gives an explicit expression for F2(x | ω). The result
if plotted in the right panel of Figure 5. Solving for the 0.1-quantiles in (56) gives the stage 2 threshold:

ϕ(2 | L) = 0.7, ϕ(2 | H) = 1.7.
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We proceed to stage 1 assuming no information is available (Y (t(1)) = /0), so (54) is

Figure 5: Information structure (left) and thresholds (right) for Example 1.

F1(x) = P(x≤ ϕ(2))+
c(3)
c(2)

P(ϕ(2) < x < d)

= 0.5[P(x≤ ϕ(2) L)+P(x≤ f f (2) | H)]

+ 0.1×0.5[P(ϕ(2) < x < d | L)+P(ϕ(2) < x < d | H)] =
c(1)
c(2)

= 0.5.

Substituting for the probabilities and the threshold ϕ(2) gives the expression for F1(x), which is plotted in
the right panel. By (54), the optimal threshold ϕ(1) is the c(1)/c(2) = 0.5-quantile of F1(x), which can be
read off from Figure 5: ϕ(1) = 1.

Thus for this example the RLD dispatch is:
Stage 1 Purchase s∗(1) = ϕ(1) = 1. So x(1) = 1.
Stage 2 Obtain forecast ω:

If ω = L,ϕ(2 | L) = 0.7. Purchase s∗(2) = [0.7− x(1)]+ = 0.
If ω = H,ϕ(2 | H) = 1.7. Purchase s∗(2) = [1.7− x(1)]+ = 0.7.

Stage 3 Observe d. Purchase s∗(3) = [d− (x(1)+ s∗(2))]+.

Suppose now that the weather forecast or stage 2 is not available. From (54), the optimal threshold ϕ(1) is
the solution of

c(1)
c(3)

= 0.5 = P(x≤ d). (57)

Here P(d) is is the prior distribution of d, so P(d) ≈ 0.5×U [−2,1]+ 0.5×U [−1,2]. Substituting this in
(57) gives

ϕ(1) = 1.67.

Stage 1 Purchase s∗(1) = ϕ(1) = 1.67.
Stage 3 Observe d. Purchase s∗(3) = [d−ϕ(1)]+ = [d−1.67]+.
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The minimum expected cost is smaller when the stage 2 forecast is available. Surprisingly, the cost savings
occur when net demand is low. For instance if d < 1 (which occurs with probability 5/6), the the after-
forecast decision s∗(1) = 1 is better than the wasteful no-forecast decision s∗(1) = 1.67. But for d > 1.67,
(which occurs with probability 1/18), the no-forecast decision is better, since it purchases 1.67 units at
a lower cost. Observe that the currently practiced decoupled dispatch ignores the existence of the later
decision, so its decision in stage 1 would be 1.67.

5.2 Example 2

We now consider several examples in which the forecast errors are Gaussian, although the net demand
d(m) = d need not be Gaussian. Theorem 4 applies, and the thresholds are given by (46):

ϕ( j) = µ( j)+∆( j). (58)

The forecast µ( j), based on Y (t( j)), has the error

d−µ( j) = ε( j)+ · · ·+ ε(m); (59)

ε( j), · · · ,ε(m) are independent zero-mean Gaussian random variables with variances σ2( j), · · · ,σ2(m).

At stage m, d is observed, so µ(m) = d, σ2(m) = 0, ϕ(m) = d. At stage (m−1) by (54),

Fm−1(x) = P{d ≤ x | Y (t(m−1))}=
c(m−1)

c(m)
, (60)

and from (59)

P(d−µ(m−1) | Y (t(m−1))} ≈N (0,σ2(m−1)),

in which N is the Gaussian distribution. So Fm−1(x) is given explicitly as

Fm−1(x) =
1√

2πσ2(m−1)

∫
∞

x−µ(m−1)
exp− t2

2σ2(m−1)
dt

= 1−Φ
(x−µ(m−1)

σ(m−1)
√

2
. (61)

Here Φ is the error function. From (46) the threshold at stage (m−1) is

ϕ(m−1) = µ(m−1)+∆(m−1), (62)

and from (60) ∆(m−1) is the solution of

c(m−1)
c(m)

= 1−Φ
( ∆(m−1)

σ(m−1)
√

2

)
. (63)

Thus ∆(m−1) can be computed ahead of time, as expected from Theorem 4.

Proceeding to stage m−2, from (55)

Fm−2 = Pm−2(x≤ ϕ(m−1))+
c(m)

c(m−1)
Pm−2(x≤ ϕ(m),ϕ(m−1) < x). (64)
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We evaluate the two probabilities in (64) using (62) and (59):

Pm−2(x≤ ϕ(m−1)) = P{x−µ(m−2)≤ ε(m−2)+∆(m−1) | Y (t(m−2))},
Pm−2(ϕ(m−1) < x < ϕ(m)) = P{ε(m−2)+∆(m−1) < x−µ(m−2) < ε(m−1)+ ε(m−2) | Y (t(m−2))}.

Since conditional on Y (t(m−2)), ε(m−1),ε(m−2) are independent Gaussian random variables with zero
mean and variances σ2(m−1),σ2(m−2), we can evaluate these two probabilities, and then express Fm−2(x)
as a function Ψm−2(x−µ(m−2)) that does not depend on Y (t(m−2)). ∆(m−2) is then obtained by solving

Ψm−2(∆(m−2)) =
c(m−2)
c(m−1)

. (65)

The optimum threshold is then given by

ϕ(m−2) = µ(m−2)+∆(m−2).

As expected, the risk premium ∆(m−2) can be pre-computed from (65). We can proceed in this way through
stages m−3, · · · ,1. We consider some numerical examples.

Example 2A: 2-stage vs 10-stage dispatch We first specify the different components of the model. As
before, the net demand d(m) = d must be met with probability 1. d can take positive or negative values. We
divide d by its maximum value dmax, so −1≤ d ≤ 1, but nevertheless refer to d/dmax as d.

For the remainder of this section t( j) denotes the time horizon (previously t− t( j)) for stage j, so t( j)→ 0
as j→ m.

Figure 6: Forecast error vs forecast horizon (hours). Source: Iberdrola Renewables

Forecast error The percentage error as a function of forecast horizon from 0 to 24 hours (day-ahead) is
given by the plot of Figure 6. The errors are Gaussian, and the percentage error is the ratio of the standard
deviation to dmax. Since d is normalized, the percentage error is also the standard deviation of the forecast
error. For any horizon t, µ(t) is the forecast, ε(t) is its error, and σ(t) is its standard deviation. That is,

µ(t) = d− ε(t), Eε(t) = 0,Eε
2(t) = σ

2(t).
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For example, from the plot, σ(24) = 0.17,σ(9.1667) = 0.161, and so on. These forecast errors are con-
sidered the best currently possible. By contrast, CAISO regards any forecast with a horizon of 6 hours as
unreliable, whereas according to the figure the error at six hours is only σ(6) = 0.09.

Stages We consider a maximum of 10 stages. The time of the stages are chosen so that each stage reduces
the uncertainty by 10%. That is, the time horizons are obtained by dividing the maximum uncertainty in the
plot (which is 17% 24-hours ahead) by 10 and taking the corresponding ‘forecast horizon’ intercepts. This
procedure leads to the following sequence of horizons:

24.00;9.17;7.62;5.97;5.30;4.72;4.10;3.20;1.52;0.75;0.0003.

Thus, the maximum percentage error 24-hours ahead is 17%, percentage error in stage 1 (9.1667- hours
ahead) has decreased to (0.9×17)%, and so on. At stage 10 (0.0003-hours ahead), the error is 0% i.e. the
net demand is completely known. The stages are shown by the circles in the plot.

Several optimal RLD strategies are considered. They differ in the subset of the 10 stages for which intra-day
markets are available. As a benchmark we also consider the oracle case in which demand is known 24 hours
ahead.

Prices The forward prices for the intra-day markets are determined as follows. From CAISO data, we take
the 24-hours ahead purchase price to be $52 per MWh, the load-following price (5-min ahead) to be $60
per MWh and the real-time price (at stage 10) to be $72 per MWh, corresponding to a load-following and
regulation-up reserve price of $8 and $20 per MW, respectively. The price at any stage with time horizon
t hours is obtained by an exponential fit: p(t) = A + Be−γt . That is, A,B,γ are selected so that p(24) =
52, p(5 min) = 60, p(0) = 72. CAISO prices are averages over the year: on any given day they deviate
considerably from these averages. This is useful to note since the optimal dispatch depends significantly on
these prices. Suppose s( j) is purchased in stage j. We require ∑

10
1 s( j)− d ≥ 0 wp 1. In Example 2B the

zero LOLP constraint is replaced by a VOLL penalty.

RLD strategies The optimal dispatch is calculated and compared for three cases:
1. 2-stages: stages 1 (24-ahead) and 10 (real-time).
2. 10-stages: all stages in the plot.
3. Oracle: at stage 1, d is known, so oracle strategy purchases s(1) = d+, at the lowest price.

The minimum cost for strategies 1,2 and 3 is successively lower. The RLD decision at stage j is

s∗( j) = [ϕ( j)− x( j−1)]+ = µ( j)+∆( j). (66)

The risk premium ∆( j) is pre-calculated.

Results We make no assumptions about the distribution of d. Instead we calculate the optimal cost condi-
tional on the realization of d as follows.
1. Select any realization of d ∈ [−1,1].
2. Generate 100 independent samples of the errors ε( j) according to N (0,σ2( j)).
3. For each d and error sample calculate the corresponding realizations of the forecast µ( j) from (59), the
optimal decision from (66), and the cost of the sample realization,

c(1)s∗(1)+ · · ·+ c(m)s∗(m).

The average of these 100 random costs is an estimate of the minimum expected cost for each RLD strategy,
conditioned on d. Figure 7 displays their costs.

In Figure 7 the cost is normalized by $72. Since 52/72 = 0.72, and the oracle strategy purchases d+, its cost
is 0.72× d+, which is the bottom or red plot. The green and blue plots are the 2-stage and 10-stage costs,
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Figure 7: Minimum expected normalized cost conditioned on d, for three strategies. The unnormalized cost
is obtained by multiplying by $72.

respectively. As expected, the blue curve is below the green curve. Both strategies make purchases even if
(in hindsight) d turns out to be negative. (Unlike the red plot, the green and red plots are not straight lines,
despite their appearance.) The normalized 10-stage cost is lower than the 10-stage cost by about 0.05 or
(0.05×72) = 3.6 $/MWh. This is a large savings in view of estimates of operating energy reserve costs of
2.5-5.0 $/MWh [15].

Figure 8: Relative savings of 10-stage vs. 2-stage strategy, conditioned on d.

Figure 8 is a plot of the relative savings, defined as the ratio (2-stage cost - 10-stage cost)/(2-stage cost),
conditioned on d. The savings approach 70% for small values of d, and decrease for d positive and large, as
more and more purchases in the 10-stage problem are made towards real time. Thus the 2-stage is relatively
more wasteful (excessive reserves are purchased) when d is small. At d = 0.4 the difference is about 0.5,
that is, the 10-stage dispatch purchases only one-half the energy of the 2-stage dispatch.

Figure 9 plots the additional minimum expected cost of the 2-stage and 10-stage strategies relative to the
oracle strategy. Again we see that the relative impact of additional information and more stages is more
pronounced for small values of d.

The impact of more stages and additional information can also be assessed from Figure 10, which plots the
risk premium ∆(i) vs stage number. (Stage 11 is for t = 0.) The premium is large and negative in the early
stages, approaching 0 at real time. The negative premium means (see (66)) that it is optimal to maintain
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Figure 9: Additional cost of 2-stage and 10-stage strategies relative to oracle strategy.

Figure 10: Risk premium vs stage number.

reserves below the forecast demand since the forecast may turn out to be too high, with compensating
purchases at later stages.

Example 2B: 2-stage vs 4-stage and VOLL In Example 2A the last stage (stage 10) is at real time, when
there is no forecast error and the reserve cost is $72 per MWh. In practical terms, this should be taken as
the cost of lost load, valued at $1,000-10,000 per MWh. We compare three RLD dispatches. In the 2-stage
problem, the stage 1 cost is $52/MWh, and VOLL is $1,000/MWh. The 4-stage problem has two additional
stages: a 1-hour ahead stage at a cost of $60/MWh and a 15-min ahead stage at a cost of $72/MWh. In the
oracle case, the 24-ahead forecast has no error. Figure 11 provides a comparison of the minimum expected
cost, conditioned on d, for the three optimal dispatches. The actual cost is obtained by multiplying the
normalized cost by $1,000.

The effect of a VOLL penalty is gauged by comparing the plots of Figure 11 with those in Figure 7. Evi-
dently, a large VOLL increases the value of additional information and more stages. The additional normal-
ized cost incurred by the 2-stage dispatch is at 0.015 or $15 per MWh. (This is much larger than the range
2.5.5.0 $/MWh, which does not include VOLL.) Again, the 2-stage cost is higher when net demand is low.
For example, when d = 0, the minimum cost for the 2-stage dispatch is $15 (0.015× 1000) vs $1 for the
4-stage dispatch.

Example 2C: 2-stage vs 3-stage, different forecast errors In the last example we consider a 2-stage
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Figure 11: Minimum expected normalized cost conditioned on d, for three strategies. The $ cost is obtained
by multiplying by $1,000/MWh.

(stages 1,2) vs a 3-stage (stages 1,2,3) RLD dispatch with costs of $52, $60 and $72, and a VOLL of $1000.
We consider three levels of forecast error: best case denoted 1X (standard errors of Figure 6), medium case
denoted 2X with twice the standard error, and the worst case denoted 3X with thrice the standard error.

Figure 12 gives the additional cost in the three cases incurred by the 2-stage dispatch, conditioned on the net
demand d. (Note: the vertical scales are different.) The benefits are large: the 2-stage cost is larger than the
3-stage cost by about $2.5 per MWh for the 1X case, $4.5 per MWh for the 2X case and $9.0 per MWh for
the 3X case. This shows that having more stages (closer to real time) compensates for better forecasts.

Figure 12: Comparison of minimum average cost for 2-stage vs 3-stage dispatch, conditioned on d for best
(1X), medium (2X), and worst (3X) forecast errors.

6 Conclusions

A system operator’s dispatch is a sequence of decisions to balance the supply and load of electric power
at every instant, in the face of forecast errors about future load and renewable generation. The decisions
comprise purchases of blocks of energy and reserve capacity (call options) in different markets, with each
block getting shorter as real time approaches. The decisions are based on the information available at the
times when the relevant market closes. In current practice, the decisions are decoupled: the SO minimizes
the expected cost of each decision, ignoring the fact that subsequent decisions can correct for current errors.
The present paper formulates the dispatch as a stochastic control problem, which takes future decisions into
account in determining the current decision.
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The optimal or risk-limiting dispatch (RLD) is found in ‘closed-form’ as a solution of the corresponding
stochastic dynamic program. In the case of constant prices, RLD has a very attractive form: at each stage,
one calculates two thresholds based on the available information. The SO’s task is to acquire or sell energy so
that the accumulated energy is between the two thresholds. In the case that the forecast errors are Gaussian,
the thresholds can be pre-computed. When the SO faces a cost function, the RLD calculations are more
complicated.

The closed-form formulas permit the comparison of optimal dispatch processes that in terms of the number
of stages, price and penalty structure and the available information. As expected, the cost is lower as the
number of stages increase or the forecast errors decrease. The cost reductions can be large: the addition of
one or two intra-day markets (with correspondingly better forecasts) can reduce reserve energy costs by 50
percent in comparison with published estimates.

The comparison suggests the strong benefits that the California Independent System Operator or CAISO can
gain by adding intra-day and intra-hour decisions to its current day-ahead and real-time balancing markets.
Adding these decisions means that CAISO’s traditional separation of 24 hour-ahead, 5-min load-following,
and regulation power (which is reflected in a corresponding separation of generation resources) may no
longer be appropriate. Instead, the SO should simply group those resources by how quickly they can sup-
ply power. The benefits of better forecasts is equally significant. The costs of these innovations remain
unexplored.

In addition to system operators, the models and results in the paper may be used to formulate the problem
faced by a wind ‘aggregator’ who must absorb the wind power variability with reserve energy, and sell the
resulting firm power.

The paper has at least three limitations. Unit commitment or generator start-up costs are not included,
because they add integer-valued decision variables. However, the results presented here remain useful after
the unit commitment decisions. Transmission constraints are ignored in the paper’s single-bus model. Lastly,
ramping constraints are also not treated. Efforts to overcome these limitations are ongoing.
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Appendix

A Proof of Theorem 1

The proof is based on Lemma 3.

Figure 13: Lemma 3 (left). Corollary 1 (right):Threshold rule for constant prices.

Lemma 3 Let V (x), x ≥ 0, be Y -adapted and convex. Let C(z), z ∈ R, be convex. Let Y ′ ⊂ Y be a
sub-σ-field. Denote

c(z) =
∂C
∂z

(z), V̂ (x) = E{V (x) | Y ′}, v(x+ z) =
∂V̂
∂z

(x+ z).

Then

z(x) = argmin
z

E{C(z)+V (x+ z) | Y ′} (67)

is the solution of

c(z(x))+ v(x+ z(x)) = 0. (68)

Moreover,

−1≤ ∂z
∂x

(x)≤ 0. (69)

Lastly

W (x) = min
z

E{C(z)+V (x+ z) | Y ′}= C(z(x))+V̂ (x+ z(x)) (70)

is convex and

∂W
∂x

(x) = v(x+ z(x)) =−c(z(x)). (71)

Proof Since z 7→ E{C(z)+V (x + z) | Y ′} is convex, z(x) is given by the first-order condition (68). Since
C, V̂ are convex, z 7→ c(z) is increasing and z 7→ −v(x+ z) is decreasing in x. The intersection of these two
curves occurs at z(x) (see Figure 13, left). Differentiating (68) with respect to x gives

∂z
∂x

(x) =− [∂v/∂x](x+ z(x))
[∂c/∂z](z(x))+ [∂v/∂x](x+ z(x))

, (72)

26



which implies (69) since ∂c/∂z, ∂v/∂x are positive. Lastly, from (68) and (71)

∂W
∂x

(x) = c(z(x))
∂z
∂x

+ v(x+ z(x))[1+
∂z
∂x

] = v(x+ z(x)) =−c(z(x)),

which is increasing in x. Hence W (x) is convex in x. �

Figure 14: Proof of Corollary 1.

Corollary 1 Suppose C(z) = c+z+ + c−z− (with c+ ≥ c− ≥ 0). Define thresholds ϕ+, ϕ− by

∂V̂
∂x

(ϕ+) =−c+,
∂V̂
∂x

(ϕ−) =−c− or ϕ+ = [∇V̂ ]−1(−c+), ϕ− = [∇V̂ ]−1(−c−).

Then

z(x)+ = [ϕ+− x]+, z(x)− = [ϕ−− x]−,

∂W
∂x

(x) = −c+1(x < ϕ+)+
∂V̂
∂x

(x)1(ϕ+ ≤ x≤ ϕ−)− c−1(ϕ− < x),

W (x) = c+[ϕ+− x]+ +V̂ (x+[ϕ+− x]+ +[ϕ−− x]−)+ c−[ϕ−− x]−.

Proof From Figure 13 we see that

x≤ ϕ+⇒ z(x) = ϕ+− x, x≥ ϕ−⇒ z(x) = ϕ+− x,

from which the results follow. The behavior of W (x) is illustrated in Figure 14. �

Proof of Theorem 1 The proof is by backward induction on stages. Since g(d,x) is convex in x by (12), it
follows from Corollary 1 applied to (21) that in state x = x(k1, · · · ,km−1) at stage (k1, · · · ,km), the optimal
decisions are given by the threshold rules

s∗+(k1, · · · ,km) = [ϕ+(k1, · · · ,km)− x]+, s∗+(k1, · · · ,km) = [ϕ−(k1, · · · ,km)− x]−,

with thresholds (24). Furthermore J∗(x,k1, · · · ,km) is given by (28) and it is convex. The proof is completed
by backward induction applying Corollary 1 to (22) for j ≤ m−1. �
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B Proof of Theorem 2

Using definition (32) we can rewrite (24) as

− fm(ϕ±(m)) =−Tmc±(m),

which is the same as (31). We now prove by backwards induction that f j(x) defined by (34) also satisfies

f j(x) =−E{
N j+1−1

∑
k j+1=0

∇J∗(x,k1, · · · ,k j+1) | Y (t(k1, · · · ,k j))}, j ≤ m−1. (73)

Suppose (73) is true. Then (26) implies that

− f j(ϕ±( j)) =−Tjc±( j),

which is (33), as required. Thus we need to prove (73).

Consider the case j = m−1. Applying Corollary 1 to (21) shows that

Em{∇J∗(x,k1, · · · ,km)} = −Tmc+(m)1(x≤ ϕ+(m))−Tmc−(m)1(ϕ−(m)≤ x)
+ TmEm{∇g}1(ϕ+(m) < x < ϕ−(m)), so

Em−1{∇J∗(x,k1, · · · ,km)} = −Tmc+(m)Pm−1(x≤ ϕ+(m))−Tmc−(m)Pm−1(ϕ−(m)≤ x)
+ TmEm−1{∇g1(ϕ+(m) < x < ϕ−(m))}. Hence

Em−1{
Nm−1

∑
km=0

∇J∗(x,k1, · · · ,km)} =
Nm−1

∑
km=0

[
−Tmc+(m)Pm−1(x≤ ϕ+(m))−Tmc−(m)Pm−1(ϕ−(m)≤ x)

+ TmEm−1{∇g1(ϕ+(m) < x < ϕ−(m))}
]
=− fm−1(x),

proving (73) for j = m−1.

We now prove that (73) is true for j, assuming it is true for j +1. From (34) we can verify that

f j(x) =
N j+1−1

∑
k j+1=0

[
Tj+1c+( j +1)Pj(x≤ ϕ+( j +1))+Tj+1c−( j +1)Pj(x≥ ϕ−( j +1))

+ E j{ f j+1(x)1(ϕ+( j +1) < x < ϕ−( j +1)}
]
.

Since (73) is true for j +1, this gives

f j(x) =
N j+1−1

∑
k j+1=0

E j{Tj+1c+( j +1)1(x≤ ϕ+( j +1))+Tj+1c−( j +1)1(x≥ ϕ−( j +1))

−
N j+2=0

∑
k j+2=0

∇J∗(x,k1, · · · ,k j+2)1(ϕ+( j +1) < x < ϕ−( j +1))}. (74)

On the other hand, applying Corollary 1 to (22) gives

∇J∗(x,k1, · · · ,k j+1) = −Tj+1c+( j +1)1(x≤ ϕ+( j +1))−Tj+1c−( j +1)1(ϕ−( j +1)≤ x)

+
N j+2−1

∑
k j+2=0

E j+1{∇J∗(x,k1, · · · ,k j+2}1(ϕ+( j +1) < x < ϕ−( j +1)). (75)
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Substitution of (75) into (74) gives

f j(x) =−
N j+1−1

∑
k j+1=0

E j{∇J∗(x,k1, · · · ,k j+1)},

which is the same as (73), as required. �

C Proof of Theorem 3

The proof imitates the proof of Theorem 1 with an application of Lemma 3. �

D Proof of Lemma 2

To simplify notation, we write µ( j) = µ(k1, · · · ,k j), ε( j) = ε(k1, · · · ,k j), and so on, and γ+ = γ+(k1, · · · ,km).
Since g(d,x) = γ+[d− x]+, ∇g(d,x) =−γ+1(d− x≥ 0), and so from (32),

fm(x) = Tmγ
+Pm(d(m)− x≥ 0) = Tmγ

+Pm([µ(m)− x]+ ε(m)≥ 0).

By (44), under Pm the random variable [µ(m)− x] + ε(m) is Gaussian with mean [µ(m)− x] and variance
σ2(m). Hence the function ψ(k1, · · · ,km, ·) defined by

ψ(k1, · · · ,km,x−µ(m)) = Tmγ
+Pm(d(m)− x≥ 0), (76)

is deterministic, which establishes (45) and hence (46) for j = m.

We proceed to j = m−1. By (34),

fm−1(x) =
Nm−1

∑
km=0

[
Tmc+(m)Pm−1(x≤ ϕ+(m))+Tmc−(m)Pm−1(x≥ ϕ−(m))

+Tmγ
+Pm−1(d(m)≥ x,ϕ+(m) < x < ϕ−(m))

]
(77)

Since

ϕ±(m) = µ(m)+∆±(m) = µ(m−1)+∆±(m)+ ε(m−1),
d(m) = µ(m)+ ε(m) = µ(m−1)+ ε(m−1)+ ε(m),

we have

{x≤ ϕ+(m)} = {ε(m−1)+ [µ(m−1)− x]≥−∆+(m)},
{x≥ ϕ−(m)} = {ε(m−1)+ [µ(m−1)− x]≤−∆−(m)},

{d(m)≥ x,ϕ+(m) < x < ϕ−(m)} = {ε(m−1)+ ε(m)+ [µ(m−1)− x]≥ 0}
∩ {−∆−(m) < ε(m−1)+ [µ(m−1)− x]≤−∆+(m)}. (78)
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Under distribution Pm−1, the random vector (ε(m− 1)+ [µ(m− 1)− x],ε(m− 1)+ ε(m)+ [µ(m− 1)− x])
is Gaussian with mean [µ(m− 1)− x]e where e is a vector of all 1’s, and covariance matrix QΣQT with
Σ = diag {σ2(m−1),σ2(m)} and

Q =
[

1 0
1 1

]
.

It follows that Pm−1 of each of the three events is a function of [µ(m−1)−x]. This proves (45) for j = m−1.

Suppose now that (45) and hence (46) hold for j + l, l ≥ 1. We show that (45) holds for j. From (34) we
see that f j(x) is a linear combination of probabilities (under Pj) of intersections of events of the form

{x≤ ϕ+( j + l)} = {ε( j)+ · · ·ε( j + l−1)+ [µ( j)− x]≥−∆+( j + l)},
{x≥ ϕ−( j + l)} = {ε( j)+ · · ·ε( j + l−1)+ [µ( j)− x]≤−∆+( j + l)},

{ϕ+( j + l) < x < ϕ−( j + l)} = {−∆−( j + l)≤ ε( j)+ · · ·+ ε( j + l−1)+ [µ( j)− x] (79)

≤−∆+( j + l)}.

Under the distribution Pj, the random vector(
ε( j)+ [µ( j)− x],ε( j)+ ε( j +1)+ [µ( j)− x], · · · ,ε( j)+ · · ·+ ε(m)+ [µ( j)− x]]

)
is Gaussian with mean [µ( j)− x]e where e is a vector of all 1’s, and covariance matrix QΣQT with Σ =
diag {σ2( j), · · · ,σ2(m)} and

Q =


1 0 · · · 0
1 1 · · · 0

· · ·
1 1 · · · 1

 .

So each probability in (34) can be expressed as explicit integrals of this multivariate distribution, hence as
explicit functions of [µ( j)− x]. This proves (45) for j. �
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