





# **Evolution of Control for the Smart Transmission Grid**

Anjan Bose Washington State University Pullman, WA

SCE Smart Grid Research Symposium California Institute Of Technology October, 2011





# The Past (before 1960s)

- Hard wired metering
- Ink chart recording
- Light and sound alarming
- Hard wired remote switching
- Analog Load Frequency Control (1930s)
- Economic Dispatch (1950s)
- ED was first to go digital





# The Present (since 1960s)

- The digital control center (SCADA-AGC)
- The RTU to gather digital data at substation
- Comm. channel from sub to control center (CC)
- The SCADA
  - The Data Acquisition from RTU to CC
  - The Supervisory Control signal from CC to RTU
- The screen based operator display
- Automatic Generation Control (AGC)
  - The digital algorithm for ED
  - The digital version of LFC





**Communication for Power System** 







# The Present (since 1970s)

- The Energy Management System (EMS)
- State Estimation (SE)
- Static Security Analysis (n-1)
- Dynamic Security Analysis (stability)
  - Transient, Oscillatory, Voltage
- Optimal Power Flow based analysis
  - Preventive Action calculation
  - Corrective Action calculation





# **Evolution of Computer Architecture**

- Special real time computers for SCADA-AGC
- Mainframe computer back ends for EMS
- Redundant hardware configuration with checkpoint and failover
- Multiple workstation configuration
  - Back-up is more flexible
- Open architecture initiated
- CIM (Common Information Model) standard



# **Eastern Interconnect Control/Monitoring Center**







# West European Power Grid





World Class. Face to Face.

Washington State

#### India



# **Grid**



#### **Phasor Measurements**







# What is Wide-Area Monitoring, Protection and Control?

- Wide-Area Monitoring Systems (WAMS)
  - First installation of PMUs was called WAMS
- Wide-Area Protection
  - Event driven
  - Logic processing of non-local inputs/outputs
  - Switching
  - Now called SPS or SIPS
- Wide-Area Control
  - Multiple non-local input/output
  - Analog input/output





# **Proposed Communications**







# **Each Application – Different Data**

- Monitoring at the control center
  - Needs all data points
  - But at slow rates (every few seconds)
- Special Protection Schemes
  - Needs few data points
  - But at fast rates (many times a second)
- Each application must access this data in a different way
  - Moving real time data from source to application is a complex optimization task



# **Management Plane**







#### **Data Base Issues**

- Real time data base must be distributed
  - Large amounts of calculated data must be part of this data base
- Static data base must be distributed
- Historical data base will require still another design
- Substation data bases and system level data bases have to be coordinated
- All data bases in the same interconnection will have to be coordinated
- Standards will be key





#### **Model Based Control**

- Real Time Model is updated by State Estimator
  - Static model updated in minutes
- Hundreds of Contingency scenarios studied
  - Operator is alerted
- Remedial Action can be calculated by OPF Can the loop be closed?
  - Faster update of Real Time Model is needed





#### State Estimator and PMUs

- Present
  - PMU measurements added to traditional SE
  - Marginal improvement in accuracy
  - No improvement in update frequency
- Future
  - PMU-only SE (observability required)
  - Linear, sub-second updates, higher accuracy
  - Substation level/Area level





#### **Two-Level Linear State Estimator**

- Substation Level
  - Substation Model
  - Circuit Breaker State Estimator
  - Bus Voltage State Estimator
  - Bad Data Detection & Identification
- Control Center Level
  - System Model
  - Topology Processor (system level)
  - State Estimator
  - Bad Data Detection & Identification





# **Closing the Loop**

- SE can update faster than SCADA data today
- Use SE output for monitoring
  - Operator visualization
  - Alarming
- Calculate Preventive Control and close loop
- Calculate Corrective control
  - Is it fast enough to close loop?





### **Database & Communication Architecture**





SL-TP: Substation Level Topology Processor

SL-SE: Substation Level State Estimator

RT: Real Time





#### **Transitional Multi-Area State Estimator**

#### **Database & Communication Architecture**







#### **Transitional Multi-Area State Estimator**

State Estimation - Whole System

$$\operatorname{Min}\left(\sum_{i=1}^{p} \tilde{\mathbf{r}}_{i}^{T} \tilde{\mathbf{W}}_{i} \tilde{\mathbf{r}}_{i} + \sum_{j=1}^{q} \mathbf{r}_{j} \mathbf{W}_{j} \mathbf{r}_{j}\right)$$
s.t.  $\tilde{\mathbf{z}}_{i} = \tilde{\mathbf{H}}_{i} \tilde{\mathbf{x}}_{i} + \tilde{\mathbf{r}}_{i} = \tilde{\mathbf{H}}_{i} [\tilde{\mathbf{x}}_{i,\text{int}}^{T}, \tilde{\mathbf{x}}_{i,\text{b}}^{T}]^{T} + \tilde{\mathbf{r}}_{i}$ 

$$\mathbf{z}_{j} = \mathbf{h}_{j}(\mathbf{x}_{j}) + \mathbf{r}_{j} = \mathbf{h}_{j}([\mathbf{x}_{j,\text{int}}^{T}, \mathbf{x}_{j,\text{b}}^{T}]^{T}) + \mathbf{r}_{j}$$

- Linear Area
- Non-linear Area
- Boundary Buses





# **Design of Wide Area Controls**

#### Simulation Test Bed for the Smart Grid









# Simulated Bus Voltages by Powertech TSAT Generated PMU Measurements 33 msecs time steps







# SE Solution at Each Substation SE Solution at Control Center 30 times per second







#### **Conclusions**

- Controls at the substation level get more sophisticated every day
- Real time data collection increases at the subs
- Utilizing these measurements and controls at the system level remains difficult
- The communication infrastructure to move this data has to be built
- The software infrastructure to handle the data has to be built
- Application development and testing environments are needed