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m Bringing Information (Communications) Technology (I(CT) to
Power Systems

m The general Socio-Ecological Systems (SES) framework [1]
— basis for re-thinking what is possible in the electric energy
systems and how can it be engineered (implications on
candidate architectures)

m The man-made electric power network, its governance
system and the Information Communications Technology
(ICT) --- key enablers of sustainable electric energy provision
[2,3]

m Common modeling framework for SES and ICT modeling and
design—interaction variables

m Dynamic Monitoring and Decision Systems (DYMONDS)
framework—a possible ICT approach to managing temporal,
spatial and contextual interaction variables

m Proof of Concept Simulations for DYMONDS
m Looking forward...
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Bringing ICT to Power Systems

W The creation of “smart grids” is the application of information
technology to the power system while coupling this with an
understanding of the business and regulatory environment

W Smart grids as a means of managing uncertainties in more
adaptive ways than in the past; aligning reliability and
efficiency

m Critical to the creation of “smart grids” is;

" development of models of the power system

" development of command and control algorithms and software
" jncorporation of security, communications, and safety systems
" BEFORE hardware is deployed!

" Our Approach to ICT design --Dynamic Monitoring and Decision
Systems (DYMONDS)
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Uncertainties in Power Systems

m System demand forecast
m Low probability high risk forced outages
m Difficult to manage

m Hierarchical control approach to the worst-case
system management

m Very high cost of preventive approach

m (NEW) Distributed-decision making (restructuring)
and intermittent resources (environment)

m The need for on-line decision making as conditions
change for enhanced efficiency w/o loss of reliable
service
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Transformational change in objectives of future energy

Today’s Transmission Grid

Tomorrow’s Transmission Grid

Deliver supply to meet given demand

Deliver power to support supply and
demand schedules in which both supply
and demand have costs assigned

Deliver power assuming a predefined
tariff

Deliver electricity at QoS determined by
the customers willingness to pay

Deliver power subject to predefined CO,
constraint

Deliver power defined by users’
willingness to pay for CO,

Deliver supply and demand subject to
transmission congestion

Schedule supply, demand and
transmission capacity (supply, demand
and transmission costs assigned);
transmission at value

Use storage to balance fast varying
supply and demand

Build storage according to customers
willingness to pay for being connected to
a stable grid

Build new transmission lines for forecast
demand

Build new transmission lines to serve
customers according to their ex ante
(longer-term) contracts for service
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Examples of Enhanced Asset Ultilization

with Better Dispatch

m Conventional system operation
" Centralized decision making
" /SO knows and decides all
" Not proper for future electric energy systems

" Too many heterogeneous decision making components
: DGs, DRs, electric vehicles, LSEs, etc.

m Dynamic Monitoring Decision-making System
(DYMONDS)

= Distributed decision making system

= Distributed optimization of multiple components 2>
computationally feasible

" Individual decisions submitted to ISO (as supply/demand bids)
" Individual inter-temporal constraints internalized
" Market clearance and overall system balanced by ISO
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Getting from here to there..

MORE THAN ONE WAY TO INTEGRATE

m Need for new infrastructure to support
change

m Moving from the worst-case deterministic
hierarchical control design to the mulfti-
layered protocols in support of multiple
tradeoff decision making

m Methods for managing dynamic response
under uncertainties (just-in-time (JIT) and
just-in-place (JIP) production, delivery and
consumption)
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Need for new infrastructure to support change

m Some key examples
- empower customer choice
- implement demand side response

- integrate renewable resources (distributed energy
resources —DERs-)

- implement differentiated reliability and Quality of
Service (QoS)

m ALL OF THESE REQUIRE TRANSFORMATION OF
TODAY’S ELECTRIC POWER GRID TO AN ACTIVE
ENABLER

m CHANGE OF PARADIGM FROM BUILDING PASSIVE
LARGE POWER LINES TO SELECTIVELY BUILDING
WHERE TRULY NECESSARY; INSTEAD, COMPLETELY
RE-DESIGNING THE GRID INTELLIGENCE
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THE MOST DIFFICULT QUESTIONS

IN DESIGNING SMART GRIDS

m THE KEY CHALLENGES---HARDWARE AVAILABLE AND
BEING DEPLOYED (SMART GRIDS) BUT VERY LITTLE KNOWN
ABOUT HOW TO INTEGRATE; SYSTEMATIC DEPLOYMENT AT

VALUE

m MUST UNDERSTAND THE KEY FUNCTION OF SMART GRID
AND ITS INFORMATION CONMMUNICATIONS TECHNOLOGY
(ICT) DESIGN

m Establish sufficiently accurate (but not too complex) modeling
framework which captures inter-dependencies between SOCIO-
ECOLOGICAL ENERGY SYSTEM (SEES), physical grid, ICT and
governance system

m The key objective: Match attributes of SEES, physical grid, ICT
gri:% governance system by designing around a given energy
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Toward Reconciling Engineering and Environmental

Objectives--SES Framework

m THE KEY DESIGN---
Fragmented coarse models of energy SES [7]

m Fragmented models the man-made power grids (for
answering different questions, different temporal and
spatial scales)

m Fragmented approaches to ICT for “smart grid”
modeling and design

m POSSIBLE TO PURSUE AN SES-LIKE FRAMEWORK
FOR DESIGNING SMART GRIDS [1]

m Our approach---align modeling for SEES and
objectives of smart grid and its ICT
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Interaction variables in bulk regulated energy

systems-hindsight view

m Spatial, temporal and contextual interactions
significant

m This is particularly pronounced as the system is
beginning to be used for more economic transfers
and intermittent resources

m Assumptions made for simplifications
m Hard to reconcile reliability and efficiency

m Different relevant interaction variables for different
energy systems (Bulk power systems, hybrid, fully
distributed)
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Hybrid Electric Energy System—How to
model and manage interactions?
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Fully distributed small-scale systems—Are
there any interactions or it is all more or less
distributed?
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Load Disturbance Around Scheduled Value

Scheduled load value and the disturbance around the value

NYISO August 2006 Load Data for 3 Hours, Power Factor = 0.8 NYISO /2\lejgust 2006 Load Reactive Power Data for 3 Hours, Measurement Frequency = 0.50 Hz,Power Factor = 0.8
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Interaction Variables within a Socio-Ecological

Social, economic, and political settings (S)

1

Resource Governance
system (RS) system (GS)
Resource ‘\ / Users
units (RU)  —¢———> Interactions (l) ~€———> (U)

~_

Outcomes (0O)

!

Related ecosystems (ECO)

(() Fig. 1. The core subsystems in a framework for analyzing social-ecological systems.
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* Physical network
connecting
energy
generation and
consumers
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Implement
interactions

* Resource
system (RS)

« Generation
(RUs)

 Electric Energy
Users (Us)
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Design for SEES—must manage

uncertainties

m Our proposed approach:

Step 1- Start with the core- and second-level
variables to characterize the energy SES

Step 2—Define deeper-level variables for capturing
inter-dependencies between energy SES, physical
grid, ICT and governance system

Step 3— Design physical grid, IT and governance
system to induce sustainability

O ENGINEERNG



A Smart Grid design framework [2,5]

m Core variables the same in each system

m Second-level variables the same— very telling of how
different energy SES [1] are

m OUR CONJECTURE --- design of a “Smart Grid” --
(not any) man-made power grid, ICT and governance
system requires introduction of deeper-level
variables for more effective differentiating among
the electric energy system types [3]
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Proposed deeper-level variables—

interaction variables

m Interaction variables [4]--- variables associated
with sub-systems which can only be affected by
interactions with the other sub-systems and not by
the actions taken at the sub-system level

m Dynamics of physical interaction variables zero
when the system is disconnected from other sub-
systems [4]

m Temporal, spatial and/or contextual (governance
and policy dependent)
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Interaction Variable Simulation for Real Power Problem in 5 Bus System
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Vast temporal and spatial inter-dependencies
(deeper-level)
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ICT design to monitor and control interaction
variables

Controls
/ (“fiy \ {f-..-_;]
\, \‘ -
[ T va

Load 1
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DYMONDS Simulator
PMU-Based Robust Control [7]

/A
\ ~/

S phijian L

m Automated Voltage
Control (AVC) and

~ Automated Flow

i~ Control (AFC)

" Design Best
[ ocations of PMUs

—  ® Design Feedback
Control Gains
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lllustration on the NPCC 36 Equivalent

System [8]

m System Load Curve
Every 10 min Real Time Load of NYISO in Jan 23, 2010
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Robust AVC lllustration in NPCC System-single

“best’ load bus monitored [7,8]
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Robust Automatic Voltage Control (AVC )-

all loads monitored

T

T T
——No Control
——Full Information Control
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Robust Automatic Flow Control (AFC) [7,8]
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Robust Automatic Flow Control (AFC)-all

loads monitored [7,8]

m Robust AFC lllustration in NPCC System
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Interesting architecture questions

m Decompose and m Design AVC for the
then design AVC? system as a whole?

m More distributed m More centralized
architecture communications

m Less complicated ~ ™ Perhaps more
communications complicated

m Different quality of ® Must design so itis
performance robust

mIn the case of AVC  mIn the case of AFC
better better

) Electrical & Computer
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Work in Progress-Architectures for

Enhanced -AGC (E-AGC) [9,10
lllustration via Four Qualitatively Different Cases

Internal Electrical Connection
Weak Strong

Case 1 Case 2

Extornal VoK o ntoractions  Weak Interactions
Electrical

Connection Strong Case 3 Cass d
Strong Interactions  Strong Interactions
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Wind Perturbations

m Case: Two-area system with strong interconnection

I

N

Power Deviation (M\W)
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IntV-based Output Feedback Control [9]

m Infrastructure of the cyber-physical system

Strong
Interconnection

Weak
Interconnection
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Two-area system with strong interconnection

Frequency Response
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AGC-Cost Dependence on Embedded Smarts

Systenh-level Regulation Cost Use of Expensive Units
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Managing temporal interactions interactively

m Different technologies perform look-ahead
decision making given their unique temporal and
spatial characteristics and system signal (price or
system net demand); they create bids and are
cleared by the layers of coordinators

m Putting Auctions to Work in Future Energy
Systems

m We illustrate next a supply-demand balancing
process in an energy system with wind, solar,
conventional generation, elastic demand, and
PHEVs.
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Managing wind power—smarter way

m Actively control the output of available
intermittent resources to follow the trend
of time-varying loads.

m By doing so, the need for expensive fast-
start fossil fuel units is reduced. Part of
the load following is done via
intermittent renewable generation.

m The technique used for implementing
this approach is called model predictive
control (MPC).

m/mplicit value of storage

Electrical & Computer 39
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Key value of managing inter-
temporal risks—major uncertainties

NORDPOOL FUTURE AND SPOT PRICES [13]
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Loa d F orecas t [ 14] It goes that forecast errors
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The Figure shows three look
ahead time horizon forecasting
results, 10 minute, 1 hour, and
24 hours. On the LHS of the
plot, actual and predicted MW
loads and their associated root
mean square errors (RMSE) are
presented on the RHS of the
plot

Error distributions for longer
look ahead time forecast show
more disturbance from normal
distribution and longer tails.
This is expected without
updating forecasting signal to
include new available measured
values.




Scatter plots for predicted
versus actual normalized
wind power signals for 10
minute, 1 hour and 24 hours
look ahead forecast are
shown in the LHS. The
RMSE increases as the look
ahead time forecast
increase.

The distribution of forecast
error is deviated from
normal distribution as look
ahead forecast time
increases, (RHS of the plots)
and depicts forecast error
histograms for the three 10
min , one hour and 24 hours
look ahead time horizons of
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DYMONDS Simulator
IEEE RTS with Wind Power

m20% /50%
penetration to
the system [2]
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Conventional Proposed Difference Relative Saving
cost over 1 year * | cost over the

year
$ 129.74 Million $ 119.62 Million $10.12 7.8%
Million
Natural Gas Power Plant Output under Two Cases Wind Power Output under Two Cases
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Coal Unit 2 (Expensive) Generation Coal Unit 2 Generation: Zoomed |n
150 : .

150 . ;
Conventional Dispatch

Centralized Predictive Dispatch
= = = Distributed Predictive Dispatch
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DYMONDS Simulator

Impact of

price-responsive demand

BBBBB

BBBBB
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What is ALM?

m Balancing the end-users’ needs (e.g. keep desired indoor
temperature) and the system’s operational conditions (e.g.
spill less wind, reduce emission, minimize cost, etc.)

m Through interactive information exchange between the

end-users and the system operator, and the load serving
entities (LSEs)

m While managing the risk from the uncertain market
conditions and the demand

(() Electrical & Computer 47
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Information flow of ALM

Tertiary layer Market

Bid fgmti?“/' ( \
Secondary layer ;:I..:t:warkep; price;:|.-:t:. Ih

Load serving entity I

Demand functign _
ﬂp#,' End #ser rate

Primary laye

End-user @
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Demand function

m Different needs on energy usage result in different demand
functions!

== 22C constant 22C relaxed =>€=20C relaxed
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Time line of ALM (day-ahead and real-time)

Day-ahead bids Day-ahead

submission market clearance _
Demand bids

every 5 minutes

Optimization looking ahead
the next day’s DA and RT

: Optimization looking ahead one hour
market price

v v

q
Day-ahead market timeline Real-time market timeline

I
I
I
1
[
12pm 4dpm 10am
I
I
I
I
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Covariance matrix of DA & RT hourly prices

m An element shows correlation
between two (different) random
variables

" 48 random variables
-2 48x48 matrix

m Variance of real-time market price
much higher

'
L= (N ] - (==} - r (5] B .

L%

m Hourly day-ahead and real-time prices
of the last n days

Day 1_ Day n_ Average Covariance matrix
Poalll Poalll Poall 9pat-par i Opa1-RT24
poal24] | poal24) ) | P2 S S
Prrlll] Prrlll Prrlll . i :

i pRT.[24l i Prrl24] __PRT[241 | ORT24-DA1 :r Gngi—RTZZL
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LSE’s short-term risk management [12]

< Day-ahead and real-time market optimization
: Markowitz optimization

" Minimizing the risk of return

= With respect to the physical temperature constraints
(example of air conditioning load)

min wraz + wcﬁTaf + (T — Tset)TWT(T — Tiet)

subject to T[k + 1] = eT'[k] + (1 — &)(T°" [k] + vz [k])
Lmin S ZE[/@] S Lmax VEk

YDA ‘ Y DART x=[x[1], ..., x[24] 17

: energy consumption within each hour
_ T=[T[1], ..., T[24]]"
: indoor temperature at each hour
w, Wy, w,: weights on cost, temperature, and risk
p=1[plll], .., p[24] ]
: anticipated hourly day-ahead market price

where >, =

2 DA-RT ' YIRT
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Tradeoff between risk and cost

risk > cost risk < cost

Cost PDFs (higher weight on cost)

Cost PDFs (higher weight on risk
U? T ( g T g T :I T D? T
Markowitz Markowitz
Look-ahead Look-ahead
06 Static 0.6 | Static
™ \ ™\
05 PN 05 N
\ ,.‘;ii::' v \
\ Y N g“
=04 / = 04 / \\
5 ' ol ',.:f \ I"-,I
g / \ g \)
03l 5 5 03f /i W
/ "-151
0.2 "
0 / \ / \
0.1 S/ N\ - 0.1 p / \
0 4= 1 1 1 e R 0 l=— 1 1 1 ey
11 12 13 14 15 16 17 11 12 13 14 15 16 17
cost(hour)

cost (dollars)

Mean: 13.56, variance: 0.68
53

Mean: 14.16, variance: 0.54
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MPC-based DYMONDS Dispatch with 50% Wind
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DYMONDS Simulator
Impact of Electric vehicles

+- mInterchange

supply /

t—- demand mode
by time-varying
prices
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Optimal Control of Plug-in-Electric Vehicles:

Fast Charging Goal of Smart Charging
140 140
- -
® 120 — e 120
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= 100 g 100
é 80 « 80
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§ 60 § 60
g 40 & 40
20 20 -
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Hour Hour
M Residential Load PHEV Load at 10% Fleet Penetration M Residential Load PHEV Load at 10% Fleet Penetration
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Plug-and-Play (No Coordination)?

!
1 |
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Total generation and total demand imbalances in 50% wind case
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Aggregation and interactions for sustainability--
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Summary:

Smart Grid Concept- Key Role of ICT

m Distributed decision making for anticipated system
conditions (provided by means of minimal coordination to
the users).

m Predictions, adaptations, aggregation through
cooperation and/or minimal aggregation

m Large economic and environmental benefits

m Need “smart regulation”—governance system to support
its evolution

m N.B. SUSTAINABLE (ELECTRIC) ENERGY SYSTEMS CAN
NOT BE BASED ON SIMPLE BLUE-PRINTS

m Smart grid should be designed to enable any energy SES
to make it as sustainable as possible; much can be done by
careful design of ICT (>20% efficiency low hanging fruit)
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Matching of Technical, Economic, and

Governance Design —Future R&D

m Not the same physical grid, ICT and governance
system for all of the five representative systems

m Design to manage sustainable multi-objective
tradeoffs

m Need for “Smart Balancing Authorities” (SBASs) in
Smart Grids

m /ICT-related transactions costs and benefits need to
be studied
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