Engineering Cytochrome P450s for Enantioselective Cyclopropenation of Internal Alkynes

Kai Chen and Frances H. Arnold. (2020) *Engineering Cytochrome P450s for Enantioselective Cyclopropenation of Internal Alkynes.* J. Am. Chem. Soc. 142, 15, 6891-6895. DOI: https://doi.org/10.1021/jacs.0c01313

Scientific Achievement

 We evolved cytochrome P450 enzymes to carry out efficient cyclopropene synthesis via carbene transfer to internal alkynes.

Significance and Impact

 The engineered P450 enzymes, as genetically encoded biocatalysts, accommodated diverse internal alkynes for cyclopropenation with unprecedented efficiencies and selectivities.

Technical Details

Calter

- Directed evolution of cytochrome P450 enzymes.
- Highly enantioselective synthesis of internal cyclopropenes (as pure enantiomers).

Directed evolution of a P450 variant, P411-C10, led to a lineage of engineered P450 enzymes, capable of catalyzing highly efficient and selective synthesis of synthetically useful, highly strained cyclopropenes from internal alkynes.