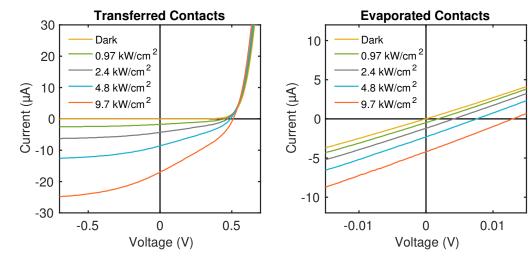
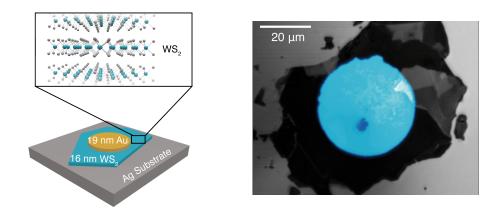
Transferred Metal Contacts for Ultrathin Solar Cells

C. M. Went, J. Wong, P. R. Jahelka, M. Kelzenberg, S. Biswas, M. S. Hunt, A. Carbone, H. A. Atwater. (2019) *A New Metal Transfer Process for Van der Waals Contacts to Vertical Schottky-junction Transition Metal Dichalcogenide Photovoltaics.* Sci. Adv. 5, 12, eaax6061. DOI: https://doi.org/10.1126/sciadv.aax6061

Scientific Achievement


 We developed a simple method for transferring metal contacts onto 2D materials and used this technique to make ultrathin solar cells.

Significance and Impact


 We performed one of the first characterizations of 2D solar cells under one-sun illumination and created a useful technique for 2D researchers.

Technical Details

- Transferring metal contacts creates metal-2D semiconductor interfaces free of Fermi level pinning.
- We measured active-layer internal quantum efficiency >90%, demonstrating efficient carrier collection.
- We measured a power conversion efficiency of 0.5%, comparable to other ultrathin 2D photovoltaics.

Transferred-contact devices show diode-like IV curves and open-circuit voltage > 500 mV. Evaporated-contact devices show resistive IV curves and open-circuit voltage below 15 mV.

Ultrathin (<150 nm) solar cells made from 2D semiconductors with transferred contacts. Left, schematic. Right, photogenerated current mapping.

Reprinted with permission from Science Advances: https://advances.sciencemag.org/content/5/12/eaax6061