Modeling Cloud Dynamics for Accurate Climate Prediction

Lopez-Gomez, I., Cohen, Y., He, J., Jaruga, A., & Schneider, T. *A generalized mixing length closure for eddy-diffusivity mass-flux schemes of turbulence and convection.* Journal of Advances in Modeling Earth Systems (2020) 12, e2020MS002161. <u>https://doi.org/10.1029/2020MS002161</u>

Cohen, Y., Lopez-Gomez, I., Jaruga, A., He, J., Kaul, C. M., & Schneider, T. Unified entrainment and detrainment closures for extended eddy-diffusivity mass-flux schemes. Journal of Advances in Modeling Earth Systems (2020) 12, e2020MS002162. <u>https://doi.org/10.1029/2020MS002162</u>

Scientific Achievement

 We developed a mathematical model that represents clouds in climate models faithfully.

Significance and Impact

 The leading source of uncertainty in climate projections can be traced back to the inability of climate models to represent clouds. Our model provides a way forward.

Technical Details

- The model is tested for stratocumulus, cumulus and cumulonimbus clouds.
- The model is time-dependent and captures well the diurnal cycle of convection.

A sketch of some of the processes captured by the proposed cloud model, including turbulence and convection. The box represents a single column within a climate model. Climate models rely on simplified mathematical models to represent all processes that have a scale smaller than the column width. *Image courtesy the author (Schneider Research Group).*