Methane Leaks from U.S. Energy Production Are Dominated by Unprocessed Gas Associated With Petroleum Exploration

https://doi.org/10.1021/acs.est.2c00927.

Scientific Achievement

- We find that fossil methane leaks are dominated by unprocessed gas associated with petroleum production.

Significance and Impact

- Constraining the origin and magnitude of emissions from fossil production is key towards mitigating climate impact.

Technical Details

- We utilize global in situ observations, global chemical transport model GEOS-Chem, and developed a novel Bayesian hierarchical model to estimate ethane and propane fossil emissions. Our estimates compare well to other studies and show a decadal increase in both gases. We use ethane and propane as tracers to diagnose the origin of methane leaks.
Why: Methane is a potent greenhouse gas. Diagnosing and quantifying methane emissions is key towards reducing climate impact.

Issue: Natural gas & petroleum systems are estimated to be the highest human source of methane in the U.S. Yet, the origin and magnitude of emissions from oil & gas processes remains highly uncertain.

Approach: We developed a novel Bayesian statistical model to estimate emissions of methane fossil tracers (ethane and propane) to help diagnose the origin of methane leaks from the oil & gas sector.

Findings: Our tracer emissions agree well with other studies. Our analysis provides evidence that methane leaks originate from unprocessed gas, and that leaks are dominated by heavy petroleum-producing regions.