2022 Impact Grants
Engineering a technology platform for monitoring gene expression dynamics within soil microbes in the undisturbed rhizosphere: lateral gene transfer, conditional guide RNAs, and sentinel plants
PIs: Gozde Demirer, Bruce Hay, Elliot Meyerowitz, and Niles Pierce
Research Team: Julia Abrego, John Marken, Paul Tarr, and Yunqing Wang
Division of Chemistry and Chemical Engineering and Division of Biology and Biological Engineering
Ecology and Biosphere Engineering Initiative
We propose to develop the first technology platform for continuously monitoring the expression dynamics of microbial genes of choice within the undisturbed rhizosphere by engineering efficient and promiscuous lateral gene transfer, programmable molecular signal transducers, and sentinel plants that integrate together to provide a "window" into the opaque rhizosphere by displaying aboveground optical changes in sentinel plant foliage in response to gene expression changes in soil bacteria at the roots. This platform will enable mechanistic investigations into the structure and function of the rhizosphere and its impact on sustainability-relevant processes like microbially-mediated nutrient cycling and greenhouse gas emission.
Monitoring Bioavailable Phosphorus with an Integrated Biosensor and Wireless Reporter System
PIs: Azita Emami, Julie Kornfield, Dianne Newman, and Changhuei Yang
Research Team: Reinaldo Alcalde, Fatima Aghlmand, Ting-Yu Cheng, Jarek Kwiecinski, Elin Larsson, Raj Mukkamala, and Oumeng Zhang
Division of Engineering and Applied Science, Division of Chemistry and Chemical Engineering, and Division of Biology and Biological Engineering
Collaborators: Dmitri Mavrodi (USM) and Linda Thomashow (USDA-ARS)
Ecology and Biosphere Engineering Initiative
Global phosphorus reserves are rapidly dwindling, and generally excessive fertilization of agricultural lands is causing economic costs and environmental harms. Standard methods for phosphorus measurement require soil extraction and testing ex-situ. These methods do not measure biologically available phosphorus, which is what is most relevant to crop growth, nor are they well suited for monitoring heterogeneous fields overtime. Accordingly, we propose to develop an integrated biosensor with a wireless reporter system to monitor in-situ bioavailable phosphorus. Our long term goal is to leverage this system for monitoring of diverse environmental parameters to guide more sustainable fertilization of crops.
Engineering Nitrogenase for the Bioelectrocatalytic Reduction of N2 to Ammonia
PIs: Steven L. Mayo and Douglas C. Rees
Research Team: Mikhail Hameedi, Andres Orta, Lucas Schaus, and Rebecca Warmack
Division of Chemistry and Chemical Engineering and Division of Biology and Biological Engineering
Sunlight to Everything Initiative and Ecology and Biosphere Engineering Initiative
Industrial ammonia production for use as agricultural fertilizer is dominated by the Haber-Bosch process which for all applications consumes ~5% of the global supply of natural gas, makes up ~3% of global CO2 emission and consumes ~1% of the global power supply. Our mission is to replace the Haber-Bosch process with a solar powered bioelectrocatalytic process that utilizes an engineered nitrogenase enzyme to sustainably produce fertilizer that is essential for modern agriculture.
2022 Explorer Grants
Polyolefins for Improved Upcycling
PI: Theodor Agapie
Research Team: Meaghan Bruening and Tianyi He
Division of Chemistry and Chemical Engineering
Plastic Sustainability
We propose to generate versions of polyolefins that have a small number of cleavable linkages that are expected to maintain desirable materials properties, while also dramatically improving this plastic's potential for conversion to value-added chemicals post-usage.
Machine-learning-enabled models of ground water transport processes
PI: Kaushik Bhattacharya
Research Team: Mina Karimi
Division of Engineering and Applied Science
Water Resources Initiative
We propose to use emerging machine-learning techniques to understand the links between the various processes that govern the transport of ground water with the goal of understanding water sustainability, aquifer collapse, subsidence and geological carbon storage.
Biocomposites from wastewater treatment algal ponds for packaging and construction
PI: Chiara Daraio
Research Team: Israel Kellersztein and Helen Wexler
Division of Engineering and Applied Science
Sunlight to Everything and Ecology and Biosphere Engineering Initiatives
We use biomass from wastewater treatment ponds, mixed with agricultural waste, to produce biocomposite materials for the construction and packaging industries.
Building a Greenhouse to Enable Broad Sustainability Research Across Campus
PI: Gozde Demirer
Division of Chemistry and Chemical Engineering
Ecology and Biosphere Engineering Initiative
There has been a recent surge of interest in the broad Caltech community to conduct research addressing important global sustainability challenges, most of which requiring an access to a controlled greenhouse environment to grow plants and study plant-microbe-environment interactions, therefore, in this proposal, we aim to provide this critical infrastructure.
Instrument for Measurements of Nucleation in Stratospheric Climate Intervention
PI: Richard Flagan
Research Team: Mingyi Wang
Division of Chemistry and Chemical Engineering
Climate Science Initiative
The proposed research will modify an existing instrument into one suitable for high altitude measurements for use in studies of atmospheric nucleation and, in particular, of the effects of injection of particle precursors into the stratosphere for solar radiation management (SRM).
Electrochemical Synthesis of Ferrate for Rural Water Treatment Systems
PI: Michael R. Hoffmann
Research Team: Sean McBeath and Yi (Sam) Zhang
Division of Engineering and Applied Science
Water Resources Initiative
Using advanced electrode materials, a novel reaction pathway and reactor for the electrosynthesis of the powerful oxidant ferrate (Fe(VI)/Ferrate(VI)) will be exploited for sustainable decentralized water and water reuse applications, on-site and on-demand, thereby eliminating the chemical supply-chain associated with conventional treatment technologies.
Exploration towards quantitative fungal profiling across environmental niches
PIs: Rustem F. Ismagilov
Research Team: Reid Akana, Jenny Ji, and Anna Romano
Division of Chemistry and Chemical Engineering
Ecology and Biosphere Engineering Initiati
We aim to develop a quantitative sequencing pipeline for determining the absolute abundances of fungal taxa in complex ecological samples (e.g., soils, plant tissues, and animal gastrointestinal tracts).
Design of Mesostructures Exhibiting Anisotropic Wetting for Solar Water Evaporation
PI: Nathan Lewis
Research Team: Azhar Carim, Madeline Meier, and Sarah Kabboul
Division of Chemistry and Chemical Engineering
Sunlight to Everything, Climate Science and Water Resources Initiatives
Investigation of the wetting properties of nanostructured thin films generated via inorganic phototropic growth for determining their condensation and liquid transport properties for use in solar driven evaporation desalination and water purification systems.
Observing and modeling change in the High Latitude Northern Forests
PIs: Paul Wennberg and Christian Frankenberg
Research Team: Ke Liu and Junjie Liu
Division of Geological and Planetary Sciences and Division of Engineering and Applied Science
Climate Science and Ecology and Biosphere Engineering Initiatives
We will investigate how the Boreal forests, which currently absorb nearly 1/4 of the carbon emitted by burning of fossil fuels, will change in the coming decades.
SustainGym: Reinforcement Learning for Carbon Emissions Reduction
PIs: Adam Wierman and Yisong Yue
Research Team: Christopher Yeh
Division of Engineering and Applied Science
Sunlight to Everything Initiative
We propose building a suite of sustainability-oriented benchmarks, called SustainGym, to measure the potential for reinforcement learning (RL) algorithms to reduce carbon emissions across tasks ranging from electric vehicle charging to scheduling jobs in data centers.